Е.Е. САВЕЛЬЕВА ¹, К.М.Н., **Г.А. ТАВАРТКИЛАДЗЕ ²,** Д.М.Н., профессор

- ¹ Башкирский государственный медицинский университет, Уфа
- ² Российский научно-практический центр аудиологии и слухопротезирования, Москва

ИЗУЧЕНИЕ АНАТОМИЧЕСКИХ ОСОБЕННОСТЕЙ НАРУЖНОГО СЛУХОВОГО ПРОХОДА

ПРИ ЭЛЕКТРОАКУСТИЧЕСКОЙ КОРРЕКЦИИ СЛУХА

По данным Всемирной организации здравоохранения (ВОЗ) за 2015 г., в мире 360 млн человек страдает от инвалидизирующей потери слуха, из них 328 млн взрослых людей и 32 млн детей [6]. Это составляет более 5% населения земного шара. Под инвалидизирующей потерей слуха ВОЗ определяет такую потерю, которая превышает 40 дБ у взрослых людей и 30 дБ у детей в лучше слышащем ухе.

Ключевые слова:

тугоухость глухота слухопротезирование электроакустическая коррекция слуха гиперподвижная нижняя челюсть

ажнейшим и нередко единственным средством реабилитации лиц с тугоухостью и глухотой считается слухопротезирование, или электроакустическая коррекция слуха, являющаяся одной из самых сложных и малоразработанных проблем клинической оториноларингологии [3]. Мало изучены вопросы влияния подвижности нижней челюсти на динамические изменения конфигурации наружного слухового прохода. Работы J. Okeson (1985) и R. Oliveira (1992) показали необходимость учета подвижности нижней челюсти при слухопротезировании, т. к. гиперподвижная нижняя челюсть приводит к проблемам слухопротезирования – выпадению слухового аппарата или вкладыша из уха и появлению акустической обратной связи (свиста) [4, 5].

Слепок наружного уха, используемый для изготовления ушного вкладыша для слухового аппарата, в точности повторяет все особенности строения, изгибы и форму наружного слухового прохода и внутренней части ушной раковины (рис. 1).

Передняя стенка наружного слухового прохода граничит с височно-нижнечелюстным суставом, а движения сустава нижней челюсти передаются на переднюю перепончато-хрящевую часть наружного слухового

Цель исследования: изучение анатомических особенностей наружного слухового прохода при электроакустической коррекции слуха.

Задачи исследования:

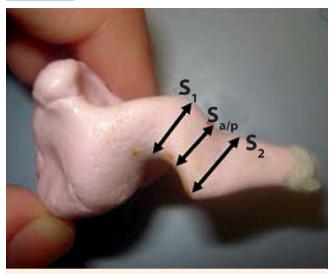
- 1. Провести общеклиническое исследование височнонижнечелюстного сустава и зубочелюстной системы у пользователей слуховых аппаратов.
- 2. Оценить влияние состояния височно-нижнечелюстного сустава на изменение архитектоники наружного слухового прохода при электроакустической коррекции слуха.

МАТЕРИАЛЫ И МЕТОДЫ

Проведено исследование в группе 79 взрослых пациентов с сенсоневральной тугоухостью, использующих слуховые аппараты. Всем пациентам провели общеклиническое обследование височно-нижнечелюстного сустава и зубочелюстной системы с тщательным сбором

Рисунок 1. Слепок наружного слухового прохода пациента К

жалоб, анамнеза, осмотром зубного ряда, аускультацией и пальпацией сустава. Для изучения влияния позиции нижней челюсти на размеры наружного уха мы использовали метод снятия слепков наружного слухового прохода при открытой и закрытой позициях нижней челюсти, предложенный J. Okeson в 1985 г. [4]. Для этого на каждое ухо изготавливали 2 слепка: с закрытым и открытым ртом, всего было изучено 182 слепка.


РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

При сборе жалоб лишь 7 пациентов (8,86%) предъявляли активно жалобы на дискомфорт или посторонние суставные шумы в проекции височно-нижнечелюстного сустава. Однако при общеклиническом обследовании сустава достаточно часто присутствовали аномалии прикуса – 39,24%, отсутствие одного или двух зубов на стороне исследования – у 36,71%, отсутствие трех-пяти зубов на стороне исследования – у 11,39%, отсутствие более 5 зубов – у 8,86%, наличие постороннего шума, щелчков при аускультации сустава – у 13,92%. Так, по данным 3.П. Латий с соавт. (1977), потеря зубов ведет к изменению соотношения элементов сустава [2], а исследования, проведенные В.Н. Гинали (1966) [1], показали, что на стороне отсутствующего моляра суставная головка наклоняется вперед, а на

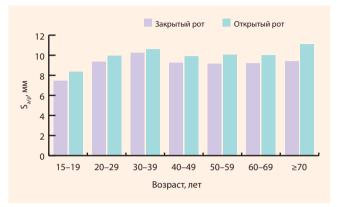
Таблица 1. Результаты общеклинического исследования височно-нижнечелюстного сустава и зубочелюстной системы у пользователей СА

Состояние зубочелюстной системы	Количество пациентов, абс.	%
Жалобы пациента на дискомфорт при движениях нижней челюсти	4	5,06
Жалобы пациента на шум, щелчки при открывании рта	3	3,80
Наличие в анамнезе перелома нижней челюсти или травмы сустава	2	2,53
Гиперподвижность при пальпации сустава или чрезмерная подвижность суставной головки при пальцевом исследовании через переднюю стенку наружного слухового прохода	19	24,05
Наличие постороннего шума, щелчков при аускультации сустава	11	13,92
Невозможность широко открыть рот (менее 30 мм) при движениях нижней челюсти	2	2,53
Синдром гипермобильности нижней челюсти и открывание рта более чем на 50 мм	3	3,80
Отсутствие одного или двух зубов на стороне исследования	29	36,71
Отсутствие трех-пяти зубов на стороне исследования	9	11,39
Отсутствие более 5 зубов	7	8,86
Физиологические виды прикуса	48	60,76
Патологические виды прикуса	31	39,24

Рисунок 2. Поперечные размеры слепка

- (S_1) передне-задний размер в месте первого изгиба;
- (S₂) передне-задний размер в месте второго изгиба;
- (S_{a/o}) передне-задний (anterior/posterior) размер поперечного сечения второго колена

противоположной стороне – назад. Суставной диск становится тоньше, и происходит смещение головки нижней челюсти. Смещение суставной головки сустава назад способствует уменьшению передне-заднего размера поперечного сечения наружного уха, что вызывает изменение нормальных анатомических размеров последнего и зачастую является причиной проблем при слухопротезировании. Результаты исследования височно-нижнечелюстного сустава и зубочелюстной системы у пользователей слуховых аппаратов отражены в *таблице* 1.


Гиперподвижность сустава при общеклиническом обследовании выявлена нами у каждого 4-го пользователя слухового аппарата (24,05%). Таким образом, общеклиническое обследование зубочелюстной системы показало высокую распространенность патологии височного сустава и зубных рядов, что обязательно должно учитываться при слухопротезировании. Методы же обследования сустава просты и быстровыполнимы (аускультация, пальпация, оценка зубного ряда и прикуса). Их использование предупреждает возникновение «потенциальных» проблем при электроакустической коррекции слуха.

Следующим этапом мы изучили слепки при открытой и закрытой позиции нижней челюсти. Изучались поперечные размеры слепка: ширина стебля в месте первого изгиба — это передне-задний размер вкладыша в месте первого изгиба (S_1); ширина стебля в месте второго изгиба — передне-задний размер в месте второго изгиба (S_2); ширина стебля в средней части второго колена — это передне-задний (anterior/posterior) размер поперечного сечения — ($S_{a/p}$) второго колена ($puc.\ 2$).

При анализе слепков при открытом и закрытом состоянии рта (n = 182) было выявлено, что самые существенные отклонения и изменение формы наружного слухового прохода происходят между 1-м и 2-м изгибами, а именно в области 2-го колена. Причем наиболее подвержен изменению передне-задний размер поперечного сечения второ-

го колена наружного слухового прохода ($S_{a/o}$). Изменение передне-заднего размера поперечного сечения наружного слухового прохода $(S_{a/p})$ отражено на *рисунке 3*.

Рисунок 3. Изменение поперечного передне-заднего размера 2-го колена наружного уха (S_{3/2}) при движениях нижней челюсти

Наибольшие изменения поперечного размера наружного слухового прохода при движениях нижней челюсти выявлены нами у пациентов в группе старше 70 лет (рис. 3). Это может быть связано с изменением у людей старшего возраста эластичности связок сустава или отсутствием зубов.

Сравнительная характеристика изменений поперечного сечения наружного слухового прохода в области 2-го колена в различных возрастных группах при движениях нижней челюсти отражена в таблице 2.

У пациентов всех возрастных групп имеется тенденция к увеличению поперечного размера наружного слухового прохода при движениях нижней челюсти (табл. 2). Среднее увеличение данного размера колеблется от 8,58 ± 2,26 до 26,75 ± 5,13%. Причем наглядно видно, что с возрастом эта разница увеличивается. Наибольшие изме-

Таблица 2. Изменение поперечного сечения наружного слухового прохода при движениях нижней челюсти в различных возрастных группах

Возраст,	Рот закрыт	Рот открыт	Разница, мм	Разница, %
лет	S _{a/p}	So _{a/p}	$\Delta \left(So_{a/p} -S_{a/p} \right)$	$\Delta (So_{a/p} - S_{a/p})$
15-19 (n = 13)	7,15 ± 0,92	7,77 ± 0,99	0,62 ± 0,14	8,58 ± 2,26
20-29 (n = 11)	8,64 ± 0,61	9,55 ± 0,58	0,91 ± 0,16	11,48 ± 1,99
30-39 (n = 9)	9,89 ± 0,92	10,89 ± 0,72	1,00 ± 0,24	12,95±4,12
40-49 (n = 10)	8,70 ± 0,76	9,60 ± 0,72	0,90 ± 0,23	11,75 ± 2,79
50-59 (n = 21)	9,24 ± 0,46	10,38 ± 0,40	1,14 ± 0,20	14,22 ± 2,70
60-69 (n = 16)	9,31 ± 0,49	10,50 ± 0,42	1,19 ± 0,26	14,54 ± 3,37
70 и более (n = 11)	9,55 ± 0,80	11,73 ± 0,66	2,18 ± 0,23	26,75 ± 5,13

нения при движениях нижней челюсти наблюдаются в возрастной группе людей старше 70 лет. То есть существенное изменение (более 20%) передне-заднего размера наружного слухового прохода свидетельствует о синдроме гипермобильного сустава нижней челюсти. Данный тип строения наружного слухового прохода мы назвали «гиперподвижный наружный слуховой проход».

Распространенность гиперподвижного слухового прохода в различных возрастных группах в нашем наблюдении отражена в таблице 3.

Таблица 3. Распространенность гиперподвижного наружного слухового прохода у людей разного возраста

Возраст, лет	Распространенность гиперподвижного наружного слухового прохода, %
15-19 (n = 13)	15
20-29 (n = 11)	17
30-39 (n = 9)	22
40 – 49 (n = 10)	30
50-59 (n = 21)	29
60-69 (n = 16)	38
70 и более (n = 11)	55

Как следует из таблицы 3, с увеличением возраста увеличивается процент пациентов с синдромом гиперподвижного наружного слухового прохода. Наибольшее количество мы наблюдали в возрастной группе старше 60 лет. Это, по-видимому, обусловлено нарушением в зубочелюстной системе (потеря зубов) и потерей эластичности тканей сустава.

Изменение поперечного размера слухового прохода у пользователей слуховых аппаратов вызывают проблемы при слухопротезировании внутриушным слуховым аппаратом или твердым вкладышем, а именно: при открытии рта аппарат будет «свистеть», т. к. при увеличении поперечного размера исчезнет герметичность и появится обратная связь. Если же увеличить поперечный размер аппарата или вкладыша, то уменьшится обратная связь, однако возникает другая проблема: ощущение дискомфорта и инородного тела при жевании и разговоре. В нашей группе наблюдения все пациенты, имеющие «гиперподвижный наружный слуховой проход» предъявляли какие-либо жалобы при использовании слухового аппарата: свист аппарата при принятии пищи и разговоре, выскальзывание аппарата из уха, искажение звучания аппарата и разборчивости речи при движениях нижней челюсти. Трое пациентов были вынуждены отказаться от использования малозаметного внутриушного слухового аппарата в связи с постоянным его выскальзыванием из уха и появлением постороннего шума при движениях челюсти.

Верным решением является применение мягкого (сжимаемого) ушного вкладыша, который будет менять свои поперечные размеры при значительных изменениях поперечного сечения уха у лиц с «гиперподвижным наружным слуховым проходом». В случае применения внутриушного слухового аппарата у лиц с выраженной подвижностью нижней челюсти возможно применять модифицированный аппарат гибридного типа, состоящий из твердого несжимаемого корпуса для электронной части аппарата и мягкой кольцевидной муфты между первым и вторым изгибом наружного слухового прохода, предназначенной для компенсации движений нижней челюсти.

Таким образом, слепок, снятый дважды (при открытии и закрытии нижней челюсти), отражает изменение размера наружного слухового прохода и является показателем его «мобильности». «Мобильный слуховой проход» может являться индикатором проблем при слухопротезировании как заушным, так и внутриушным слуховым аппаратом.

выводы

- 1. Гиперподвижность височно-нижнечелюстного сустава и «мобильный наружный слуховой проход» выявлен у каждого четвертого пользователя слухового аппарата (24,05%). С увеличением возраста увеличивается процент пациентов с синдромом гиперподвижного наружного слухового прохода.
- 2. При анализе слепков при открытом и закрытом состоянии рта существенные отклонения и изменение формы наружного слухового прохода происходят в «ключевой зоне» между первым и вторым изгибом в

- области второго колена. Наиболее подвержен изменению передне-задний размер поперечного сечения наружного слухового прохода.
- 3. Для пациентов с «гиперподвижным наружным слуховым проходом» предпочтительнее использовать мягкий тип индивидуального ушного вкладыша. В случае слухопротезирования внутриушным слуховым аппаратом возможно использовать корпус внутриушного слухового аппарата гибридного типа, состоящий из твердого несжимаемого корпуса для электронной части аппарата и мягкой кольцевидной муфты между первым и вторым изгибом наружного слухового прохода, предназначенной для компенсации движений нижней челюсти.

ЛИТЕРАТУРА

- 1. Гинали В.Н. Изменения височно-челюстного сустава при потере зубов. Под ред. А.Т. Бусыгина. Ташкент: Медицина, 1966. 32 с. 437.
- Латий З.П., Оскольский Г.И. Томографическое изучение височнонижнечелюстных суставов при изменении высоты прикуса. Тезисы докладов итоговой научной конференции, посвященной 60-летию Великой Октябрьской социалистической революции. Краснодар, 1977: 58-60
- Сапожников Я.М., Богомильский М.Р. Современные методы диагностики, лечения и коррекции тугоухости и глухоты у детей. М.: Икар. 2001. 250 с.
- 4. Okeson GP. Management of temporomandibular disorders and occlusion. Mosby, 2012. 504 p.
- 5. Oliveira R. The dynamic ear canal. Ed. by B. Ballachanda. San Diego: Singular Publ. Group, 1995: 83-112.
- World Health Organization. Fact Sheet Nº300: Deafness and hearing impairment, 2015.

