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INTRODUCTION

Type  2 diabetes mellitus (T2DM) is a  polygenic 
multifactorial disease, unlike, for  example, maturity- onset 
diabetes of the young (MODY). The cause of multifactorial 
disease isn’t DNA changes in  one particular gene, but 
the presence of a genetic predisposition. It can be realized 
under the  influence of  environmental factors. Genetic 
predisposition to the  development of  polygenic diseases, 
including T2DM, is associated with the  inheritance 
of  specific alleles of  “healthy” genes. These alleles are 
called etiological variants. These gene variants are widely 
distributed in a population, and each of them does not lead 
to the  development of  the disease on its own. Only 
the presence of a combination of etiological variants can 
lead to physiological changes. The modifications are part 
of  the pathogenesis of  a particular disease. It should be 
noted that a polygenic disease develops in individuals with 
a genetic predisposition only as a result of the interaction 
between genetic factors and various environmental factors. 
Therefore, T2DM can be called not only a  polygenic, but 
also a multifactorial disease  [1]. The multifactorial nature 
of T2DM has been demonstrated in many studies. The first 
studies devoted to the  molecular genetic mechanisms 
of  T2DM were carried out on the  basis of  the research 

of  linkage disequilibrium and the  results of  the search 
for candidate genes [2]. Discovery of polymorphic markers 
in  candidate genes, whose products are involved in  the 
pathogenesis of T2DM, made it possible to identify genes 
associated with insulin resistance (IR), obesity, β-cell 
dysfunction, and decreased incretin response  [3]. But 
the greatest progress in identifying genetic markers for the 
development T2DM was achieved with the advent of GWAS 
(Genome- Wide Association Study). This method detects 
relatively weak associations of  genetic variations with 
the  development of  a particular disease. However, 
the genetic predisposition to multifactorial diseases is not 
always explained by common polymorphisms. Therefore, 
the etiological variants are clarified during further studies 
on sequencing of  the genome regions of  interest, which 
were previously identified in genome-wide studies [3, 4]. 

TYPE 2 DIABETES- ASSOCIATED GENETIC 
POLYMORPHISMS 

More than 100  common genetic variants increasing 
the  risk of  T2DM have already been described. And most 
of them are polymorphisms in genes belonging to the system 
associated with β-cell function. For example, ABCC8 (rs757110, 
rs1799859), IGF2BP2  (rs4402960, rs11705701, rs1470579), 
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CDKAL1  (rs7754840, rs10946398), KCNJ11  (rs5219, rs5129), 
KCNQ1  (rs2283228, rs2237895, rs2237897, rs2237892, 
rs231362, rs163184), SLC30A8  (rs11924032, rs13266634), 
C2CD4A/В (rs10811661, rs7172432, rs1436955), WFS1 
(rs1801214, rs10010131), TCF7L2  (rs7903146, rs12255372, 
rs12243326), GCK (rs4607517) and some other genes [2, 3, 5, 
6]. Genetic variants involved in the formation of IR are also 
well studied. There are genetic changes in  PPARG 
(rs18012824, rs1801282, rs1801284), IRS1  (rs2943634, 
rs2943641), ADIPOQ (rs16861194, rs266729, rs2241766, 
rs1501299, rs17366743, rs17300539), ADIPOR2 (rs11061971, 
rs16928751), PPARGC1A (rs8192678), FTO (rs8050136, 
rs9939609, rs17817449, rs1421085, rs11642841) [2, 3, 5–8].

Chronic inflammation and impaired angiogenesis play 
an important role in  the development of  T2DM and its 
complications. Therefore, associations of  gene 
polymorphisms of  various cytokines and growth factors 
with T2DM have also been studied. According to some 
authors, individuals with certain combinations of  genetic 
variants of  VEGF, IL1B, IL4, IL6, IL10  and TNFA may have 
a  higher risk of  developing T2DM. The association 
of  polymorphic loci of  the chemokine genes 
CCL20  (rs6749704) and CCL5  (rs2107538) with T2DM was 
also shown in some studies [2, 9].

Some gene polymorphisms associated with lipid 
metabolism disorders are also considered as candidate 
genes for T2DM by some authors – LPL, FABP2 and LRP 5 [2]. 
In addition, some studies have shown the  association 
of  polymorphic markers of  xenobiotic biotransformation 
genes with the  risk of  developing T2DM. There are GCLC 
(rs17883901), GPX2 (rs4602346), GSTP1 (rs1695), GSTT1 (type 
I/D polymorphism; rs17856119) and NOS2 (rs2297518). The 
mechanism of this relationship is possibly associated with 
an increased concentration of  reactive oxygen species 
(ROS) in  patient’s blood. And increased oxidative stress 
leads to a  decrease in  the activity and mass of  β-cells, 
because they are very vulnerable to the action of ROS due 
to their extremely low antioxidant capacity  [2, 3, 10]. 
Association T2DM with single- nucleotide polymorphisms 
(SNP) of  the MC4R (rs17782313) and the  FTO (rs8050136, 
rs9939609, rs17817449, rs1421085, rs11642841) genes is no 
less interesting, because the products of these genes affect 
eating behavior [2, 3, 5]. 

T2DM-associated genetic polymorphisms with unknown 
mechanism of  participation in  the pathogenesis 
of  carbohydrate metabolism disorders have also been 
identified by genome-wide studies in  recent years. For 
example, ACHE, PLS1, TCERG1L, PCNXL2, PAPL, CR2 GALNTL4, 
LOC729013, LPIN2, RBM43, RND3, PEX5L, SRR, DUSP9, ZPLD1, 
TMEM45B, BARX2, KIF11, HUNK, SPRY2, SYN2, PPARG, CENTD2, 
NOTCH2, ADAM30, C2CD4B, NOTCH2, MAEA, ZFAND3, SLC30A8, 
ADCY5, GCC1, PAX4, TLE4/CHCHD9, GLIS3, PEPD, HMGA2, 
ADAMTS9 and some other genes [3].

It should be noted, that different polymorphisms 
associated with T2DM have been identified in  genome-
wide studies in European and Asian populations [6]. It also 
was found, that ethnicity and gender also affect 
the  distribution of  polymorphisms and their association 

with T2DM  [7]. The discovery of  new susceptibility loci 
of  T2DM using GWAS in  various ethnic groups confirms 
the  need for  more genome-wide studies among people 
of  different countries and nationalities. New genetic risk 
loci have been successfully explored recently not only 
in Asian and European populations, but also in Pima Indians 
and Mexican Americans.  [6]. At the moment, we also have 
data from large studies of prevalence of various polymorphic 
markers associated with T2DM among different peoples 
living in Russia [2, 3, 5, 11–17].

POSSIBLE CLINICAL APPLICATIONS OF KNOWLEDGE 
ABOUT THE GENETICS OF TYPE 2 DIABETES 

The development of  genomic technologies opens up 
new possibilities for personalized prevention and treatment 
of  T2DM. There are several areas in  which the  results 
of molecular genetic studies can bring a significant help:

 ■ a  detailed study of  the molecular mechanisms of  the 
pathogenesis of T2DM;

 ■ an assessment of the contribution of genetic predisposition 
and environmental factors to the development of T2DM;

 ■ an assessment of  the individual genetic risk 
of developing T2DM and the susceptibility of a particular 
person to the effects of lifestyle changes;

 ■ stratification of  T2DM into subclasses to predict 
the course and outcomes of the disease, to assess the risk 
of developing complications of diabetes and to determine 
the most effective individualized treatment strategies;

 ■ a  prediction the  timing and intensity of  progression 
of T2DM and its complications;

 ■ predicting the  clinical response to therapeutic agents 
and assessing the  risk of  early need for  insulin therapy 
in patients with T2DM;

 ■ a  support in  the development and validation of  new 
drugs or the  potential use of  already existing off-label 
drugs [18–20].

Further in  the article, we will take a  closer look at 
the  application of  advances in  the study of  the genetics 
of T2DM to stratify the disease into subclasses, to assess 
the risk of developing carbohydrate metabolism disorders 
and complications of  diabetes, and also to predict 
the effectiveness of glucose- lowering therapy.

SUBCLASSIFICATION OF T2DM

The phenotypes of patients with T2DM are significantly 
heterogeneous and they have an unequal risk of developing 
complications of diabetes. The rate of the disease progression 
varies from very fast in some patients to slow in others. The 
need for insulin therapy develops in some patients already 
in  the first years after the  manifestation of  the disease, 
while other patients have effective glycemic control and 
a  stable course of  diabetes for  decades on metformin 
monotherapy. In addition, the complications associated with 
hyperglycemia are also heterogeneous in different patients 
with T2DM. These facts suggest that many subgroups with 
different clinical course of the disease exist within a single 
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T2DM into clusters [19, 21].

In 2015 L. Li et al. made one of the first major attempts 
to cluster patients using clinical and laboratory features. 
They analyzed data from electronic health records 
of  11,210  people of  different nationalities using machine 
learning methodology and identified 3 subtypes of patients 
with T2DM  [22]. Then E. Ahlqvist et  al. studied a  cohort 
of  8,980  Swedish patients with newly diagnosed T2DM 
based on this work. They selected the  following clinical 
characteristics for  their cluster analysis: anti-glutamic acid 
decarboxylase (GAD) autoantibodies, age at diagnosis 
of  T2DM, body mass index (BMI), glycated hemoglobin 
(HbA1c) and the  homeostatic model assessments of β-cell 
function and IR (HOMA2-b and HOMA2-IR, respectively). Five 
clusters with different prognosis of disease progression and 
risk of complications were identified by the authors of  the 
study after clustering: Severe Autoimmune Diabetes (SAID), 
Severe Insulin Deficient Diabetes (SIDD), Severe Insulin 
Resistant Diabetes (SIRD), Mild Obesity- related Diabetes 
(MOD) and Mild Age- Related Diabetes (MARD) [19, 23]. This 
method showed high reproducibility and proved predictive 
value in  studies on a  variety of  populations, including 
European, American, Hispanic, Chinese cohorts. In addition, 
this method of  covariant selection has demonstrated its 
reproducibility and fundamentality in  patient cohorts 
of  large randomized clinical trials, for  example, ADOPT, 
RECORD, LEADER, DEVOTE, SUSTAIN-6  and ORIGIN 
[19,  24–29]. It is interesting, that E.  Ahlqvist et  al. also 
performed a molecular genetic study to identify a possible 
genetic predisposition to a particular course of T2DM. And 
the results of the study showed that the genetic associations 
in  the clusters were really different. It supports 
the significance of the clustering method.

According to the  study, no one genetic variant was 
associated with all clusters simultaneously. For example, 
gene variant TCF7L2 (rs7903146) was associated with SIDD, 
MOD and MARD, but not with SIRD. The TM6SF2  gene 
polymorphism (rs10401969) was associated with SIRD, but 
not with MOD. This genetic polymorphism has a  known 
association with non-alcoholic fatty liver disease (NAFLD). 
These results suggest that SIRD is characterized by more 
metabolically unhealthy obesity than MOD, and this feature 
is probably genetically determined. SNP rs4402960  in 
IGF2BP2  and rs10811661  in CDKN2B was associated with 
development of SIDD and MARD. And the products of these 
genes affect the  survival of  pancreatic β-cell. Also, 
the association between the genetic variants of HHEX/IDE 
(rs1111875) and the development T2DM with signs of the 
SIDD cluster was found. While a variant of KCNJ11 (rs5219) 
has been identified in a group of patients with MOD [23].

Recently, R. Wagner et  al. have applied clustering 
methods with complex clinical variables on a longitudinal 
cohort of patients without T2DM and identified 6 clusters. 
Three of these new clusters corresponded to very low-risk, 
low-risk, and obese but low-risk groups. The remaining 
3 clusters were associated with an increased risk of T2DM 
and were determined by β-cell failure (4 cluster), IR / NAFLD 

(5 cluster) and visceral fat / nephropathy (6 cluster). Patients 
in clusters 4 and 5 had a high risk of T2DM, while patients 
in cluster 6 had a moderate risk of diabetes, but an increased 
risk of chronic kidney disease (CKD) and high rates of all-
cause mortality. R. Wagner et  al. also applied the  genetic 
risk score in  the study cohort of  patients and found that 
the  2  highest-risk clusters (β-cell and IR / NAFLD) had 
concurrently increased genetic risk. These results highlight 
the  role of  nonmodifiable genetic risk in  development 
of T2DM [19, 30].

It should be noted, that clustering approaches based on 
clinical data have their limitations despite the  high 
reproducibility. First, clinical signs are not static indicators 
and they are highly dependent on environmental factors. 
For example, a  patient with newly diagnosed T2DM has 
changed his lifestyle after consulting a doctor. And lifestyle 
modification led to a decrease his body weight, BMI and IR, 
and the patient may be assigned to another cluster in the 
future. Also, the  list of  universal clinical variables 
for  clustering isn’t clearly described at the  moment. And 
the variables chosen for cluster analysis have a significant 
impact on which subgroups will be identified [19]. 

In this regard, the researchers proposed to cluster patients 
with T2DM based on the results of a molecular genetic study. 
А significant number of polymorphic markers associated with 
T2DM have been identified using GWAS, and these genetic 
data are more stable than clinical indicators. They don’t 
change over time and can be used to assess the  risk 
of  developing the  disease at any point in  patient’s life, 
regardless of changes of clinical parameters [19].

Currently, we have 2 hierarchical clustering of etiological 
variants – «hard» и «soft». In «hard» hierarchical clustering 
each genetic variant can only belong to one specific cluster 
or subgroup. And «soft» clustering means that each genetic 
variant can belong to more than one cluster or phenotype. 
Such approach allows modeling pleiotropic effects of genes / 
loci. Therefore, such clustering seems more appropriate 
in study of a polygenic multifactorial diseases, such as T2DM. 
For example, one person may have both genetic variants that 
affect the  risk of  developing obesity and insulin secretion. 
And both of these factors will simultaneously contribute to 
the risk of developing T2DM [19, 31].

The method of  “soft” hierarchical clustering was 
developed by M.S. Udler et  al. The researchers used 
94 genetic variants and 47 clinical features associated with 
high risk of T2DM to subclassify the  disease. As a  result, 
they identified and reproduced 5  partially overlapping 
genetic clusters (table). The first two clusters were 
associated with impaired insulin processing/secretion, and 
all patients in these subgroups have genes connected with 
β-cell deficiency. The remaining 3 clusters were related to 
tissue- specific response to insulin. Cluster 3  (“obesity/
adiposity”) was characterized by increased waist 
circumference (WC), BMI, body fat and fasting insulin. 
According to these parameters cluster 3 represented classic 
obesity mediated T2DM. Cluster 4  (“lipodystrophy”) was 
determined by elevated IR, high triglycerides levels, 
increased waist-to-hip ratio (in women only) and 
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concomitant decrease in BMI. Identification of this cluster 
draws our attention to the  significant role of  visceral fat 
both in the development of IR and T2DM. Cluster 5 («liver/
lipid») was associated with decreased serum triglycerides 
levels, but increased NAFLD risk. And we can assume that 
the  main role in  the development of  T2DM in  patients 
in  cluster 5 play impaired hepatic metabolism of glucose 
and lipids. It is worth noting that these five genetic clusters 
were similar in  many aspects to previously identified 
clinical clusters [19, 32, 33]. 

Another example of  the application of  the “soft” 
hierarchical clustering is the study by A. Mahajan et al. In 
the  research authors identified one more cluster, 
characterized by both impaired insulin secretion and 
the presence of IR [19, 32, 34].

Application of the “soft” hierarchical clustering technique 
to independent replication cohorts demonstrated that 
1/3  of patients was in  the top 10% of  genetic risk for  a 
single cluster. The comparison of  mean characteristics 
in  individuals with the  highest genetic risk identified 
specific clinical profiles defining each genetic cluster. For 
example, patients with the  highest genetic risk in  the 
«obesity / adiposity» cluster had significantly higher BMI, 
body fat and WC, than other persons in  this cluster. 
Conversely, individuals at the  highest genetic risk for  the 
“lipodystrophy” cluster had significantly lower levels of BMI, 
body fat mass and HDL cholesterol. Thus, based on these 
results we can presume that each genetic cluster 
represented a  specific pathophysiology through which 
intermediate phenotypes affect the risk of T2DM [19, 33]. 

In summary, at least 5  groups representing patho-
physiological mechanisms, that may help explain 

the  hetero geneity of  T2DM, have been identified using 
clustering of genetic loci. But further researches are needed 
to determine the clinical applicability of these clusters. It is 
possible that new approaches combining clinical and 
genetic characteristics into a single model will be developed 
in the near future. Creating models of subclasses of T2DM 
that take into account the  influence of  environmental 
factors (such as dietary habits and physical activity) is also 
a promising direction. It is clear that the inclusion of genetic 
knowledge in the classification of T2DM will require more 
research. But it could potentially expand our understanding 
of  the pathogenesis of  the disease and improve 
the treatment of T2DM as a separate disease, and as part 
of an integrated network of metabolic diseases [35].

THE CONCEPT OF METABOLIC DISEASE 
ENDOPHENOTYPES

Certain pathological pathways that belong to some 
cluster and lead to an increased risk of  T2DM can also 
affect the risk of developing other metabolic disorders, such 
as obesity, NAFLD, hypertension, atherosclerotic 
cardiovascular diseases (CVD) and CKD. Some authors 
propose to use the  term “endophenotypes” to refer to 
common pathological processes that underlie metabolic 
diseases. Endophenotypes are based on a  certain set 
of genetic variations (Fig.) [35]. 

Understanding the  molecular basis of  the overall risk 
of  metabolic diseases highlights the  close relationship 
between these disorders. And it can help improve screening 
for these diseases in healthy people and preventive measures 
to reduce the risk of complications in people with T2DM.

 Table. Comparison of subgroups of T2DM identified by clustering based on clinical features and with genetic clustering methods 
(adapted from [19])

Possible 
pathogenic 

defect

Clinical and Biochemical Clustering (Е. Ahlqvist et al.) Genetic Clustering (M.S. Udler et al., A. Mahajan et al.)

Cluster Characteristics Outcomes Cluster Characteristics Outcomes
Example Genes 

Captured 
in Cluster

β-cell failure
SAID GADA+ ↓insulin ↑ insulin dependence β-cell ↑proinsulin

↓ insulin
↑ CAD
↑stroke HNF1A, SLC30A8

SIDD ↓ insulin ↑ retinopathy 
↑ insulin dependence Proinsulin ↓proinsulin

↓ insulin - KCNJ11

Mixed β-cell 
failure + IR – – – Mixed

↓proinsulin
↓ insulin
↑HOMA2-IR

– PAM, RREB1

IR
SIRD

↑HOMA2-IR 
↑HOMA2-b
↑ BMI

↑ CKD
↑ NAFLD

Lipodystrophy
↓ BMI
↑ TG

↑ insulin

↑ CAD
↑ CKD

↑ hypertension
KLF14, FAM13A

NAFLD/lipid ↓ TG ↓ CKD TM6SF2, GCKR

MOD ↑ BMI, mild 
T2DM – Obesity/adiposity ↑ BMI

↑ insulin – FTO/IRX, MCR4

? MARD ↑ age, normal 
BMI, mild T2DM – – – – –

SAID – Severe autoimmune diabetes mellitus; SIDD – Severe insulin- deficient diabetes mellitus; SIRD – Severe insulin- resistant diabetes mellitus; MOD – Mild obesity- related diabetes mellitus;  
MARD – Mild age-related diabetes mellitus; GADA – anti-glutamic acid decarboxylase autoantibodies; TG – triglycerides; CAD – coronary artery disease, CKD – chronic kidney disease; 
BMI – body index mass; NAFLD - non-alcoholic fatty liver disease; T2DM – type 2 diabetes mellitus
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GENETIC RISK ASSESSMENT 
FOR THE DEVELOPMENT OF T2DM

One of  the most important clinical applications 
of genetic information is to predict the  risk of developing 
T2DM in  patients without carbohydrate metabolism 
disorders. It will allow the development of early intervention 
strategies to prevent or delay the onset of  the disease. In 
recent studies, genetic risk scoring models have been 
сreated by summation of multiple independently inherited 
polygenic variants associated with T2DM to assess predictive 
power based on current genetic information [6]. In practice, 
genetic information may allow health care providers to 
predict an individual’s risk of developing the disease.

In recent years, researchers have proposed several 
concepts for assessing genetic risk:

 ■ partitioned polygenic risk scores (pPRS) to detect 
patients with high risk for  T2DM by identifying an 
intermediate pathway (for example, insulin deficiency) 
for early intervention;

 ■ restricted polygenic risk score (rPRS) based on the study 
of polygenic variants in candidate genes;

 ■ global polygenic risk scores (gPRS) [19, 34].
Early attempts to combine T2DM risk alleles using well-

known candidate genes had limited predictive benefit. The 
creation of  new rPRS models using GWAS has increased 
their predictive value. However, they were still no better 
than models based on assessment of clinical parameters [19]. 
For example, P.J. Talmud et al. found that predictive models 
based on the patient’s phenotypic characteristics (Cambridge 
Diabetes Risk Score and Framingham Risk Score) determine 

10 year risk of developing diabetes more accurately, than 
genetic scores for 20 polymorphisms associated with T2DM. 
Adding genetic risk assessment to phenotyping- based risk 
models slightly improved the accuracy of T2DM risk rating. 
Thus, the  inclusion of  a genetic component in  existing 
prognostic scales or the development of new ones that take 
into account the  clinical and genetic characteristics 
of  patients is one of  the ways to improve predictive risk 
models for T2DM [7, 36].

The researchers recognized the limited predictive value 
of  rPRS for  assessing the  risk of  developing a  polygenic 
disease and proposed a  different approach  – gPRS. This 
model uses polygenic variants of  the whole genome to 
calculate genetic risk, while rPRS takes into account only 
a  few dozen variants  [19]. According to A.V. Khera et  al. 
those 5% of patients who were classified as at high genetic 
risk on the basis of gPRS results had a 2.75-fold increased 
risk of developing T2DM compared with the remaining 95% 
of  individuals included in the study [37]. A. Mahajan et al. 
created a  similar gPRS model using the  updated GWAS 
for  T2DM in  nearly 1  million people and applied it to 
the entire UK Biobank data. According to the results of this 
study, the  risk of  developing T2DM in  individuals with 
a high genetic risk (top 2.5%) was increased by 3.4  times 
compared with those who had an average (50%) risk [34]. 
Further M. Vujkovic et al. used gPRS developed by A. Mahajan 
et al. in them study on a cohort of patients enrolled in the 
Million Veteran Program. And they found that individuals at 
the highest genetic risk for T2DM had a significantly higher 
incidence of  microvascular complications (CKD, diabetic 
neuropathy, diabetic retinopathy) than other patients [38].

 Figure. The concept of endophenotypes underlying the development of metabolic diseases (adapted from [35])
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Recently, a  number of  research groups have proposed 
the use of pPRS in addition to the rPRS and gPRS models. 
When the researchers use this risk assessment model for a 
polygenic disorder, he isn’t interested in the final phenotype 
of the disease, but rather in various intermediate phenotypes 
that reflect various links in  its pathogenesis. For example, 
take intermediate phenotypes that play a  significant role 
in  the development of  T2DM. This may be the  presence 
of  obesity or lipodystrophy, the  identification of  insulin 
deficiency or IR, the development of NAFLD and dyslipidemia. 
The pPRS calculation data for each intermediate phenotype 
can be used to determine the overall genetic risk of T2DM 
across known genetic clusters / pathological pathways. Each 
intermediate phenotype can be visualized as a color. These 
risks / “colors” can then be combined, and the presentation 
of the individual risk for T2DM combined with the visualization 
of  the different contributions of  individual pathways to 
development of the disease. This color differentiation helps 
faster interpretation of genetic testing data and can be used 
in patient counseling. Health care providers can also choose 
a personalized therapeutic strategy for patients at very high 
risk for  a particular intermediate phenotype / pathological 
pathway based on pPRS results. That strategy will focus on 
the prevention or treatment of identified disorders to prevent 
the development of T2DM [19]. 

Unfortunately, today the clinical use of various polygenic 
risk assessments for T2DM is limited. But we already have 
the  results of  several clinical studies using genetic risk 
assessment models in  the management of  patients with 
diabetes. For example, J.H. Li et al. showed that individuals 
with T2DM and a  high genetic risk for  rPRS had a  more 
significant decrease in HbA1c in response to sulfonylurea 
therapy, but not to metformin at 1 year of  follow-up  [39]. 
In  turn, G. Jiang et  al. demonstrated that each increase 
in  the standard deviation in  their rPRS model elevated 
the risk of needing insulin therapy in a patient with T2DM 
by 7%  [40]. R. Wagner et al. used in  their study gPRS and 
found that increased pancreatic steatosis impairs β-cell 
function with reduced insulin secretion only in individuals 
with high genetic risk for T2DM [41]. And in a recent study 
by S. Srinivasan et al. genetic risk assessment using pPRS 
showed that patients with the  highest risk for  the 
intermediate phenotype with lipodystrophy had significantly 
higher IR and LDL levels despite of  lower BMI and WC. 
These results predispose to an evaluated risk of  cardio-
vascular events in  this subgroup of  patients  [42]. Thus, 
currently we have limited data on the  benefits of  using 
polygenic risk assessment models in real practice. But this 
direction of  application of  genetic information is quite 
relevant and promising. Further research is needed to 
determine the relationship between different PRS models 
and stratification of  the risk of  developing T2DM and its 
complications and prediction the  course the  disease and 
response to therapy in the clinical context [19]. 

Some authors consider that genetic prediction models 
can be improved by identifying and including the  low-
frequency and rare genetic variants or studying polymorphic 
risk markers for  T2DM in  populations of  non- European 

origin. It is also necessary to do research aimed at increasing 
knowledge about the  structural features of  epigenetic 
changes in  genes. Because of  epigenetic factors (DNA 
methylation, histone modification) can mediate the influence 
of  environmental exposure on the  risk of  developing 
T2DM  [33, 43]. The development of  statistical methods 
for assessing gene-gene and gene-environment interactions 
may be also a promising direction in the near future [44].

AN ALTERNATIVE WAY TO USE THE RESULTS OF T2DM 
GENETIC RISK ASSESSMENT

An alternative clinical direction could be the  use 
of  genetic information as a  tool to motivate patients to 
modify their lifestyle to change the increased risk of T2DM. 
It is well known that proactive lifestyle interventions 
reduce the  risk of  T2DM, including in  people with 
prediabetes. Some clinical studies show that lifestyle 
modification reduces the  risk of  developing T2DM, even 
in individuals with genetic variants associated with a high 
risk of  diabetes. For example, in  the DPP (Diabetes 
Prevention Program) study, homozygous carriers of  the T 
allele of  the rs7903146  in TCF7L2  were randomized to 
placebo or active lifestyle modification. According to 
results, patients in  the placebo group had an 80% higher 
risk of  developing T2DM than patients in  the lifestyle 
intervention group. So, patients in  the intervention group 
didn’t have an increased risk, despite the  presence 
of polymorphism associated with T2DM. The authors of the 
study concluded that lifestyle changes may outweigh 
the  genetic risk, at least in  cases of  inheritance of  a 
polygenic variant of TCF7L2 [45, 46].

Speaking about the  benefits of  using genetic testing 
data to motivate patients to change their lifestyle, we can 
refer to the  recently published results of  the research by 
R.W. Grant et al. They studied how knowledge of the genetic 
risk of  a disease can influence a  person’s desire and 
willingness to make lifestyle changes. According to a survey 
of 211 patients about how they would react to the results 
of  genetic testing, containing information about an 
increased genetic risk of  developing T2DM, 71% 
of  respondents answered, that this information would 
motivate them to change their lifestyle. Thus, genetic 
information may be useful in  persuading the  patient to 
change their behavior and help influence modifiable risk 
factors for  T2DM to prevent the  realization of  a genetic 
predisposition  [47]. However, further studies involving 
a larger number of respondents and prospective studies are 
required to confirm this hypothesis.

ASSESSING GENETIC VARIATION IN PREDICTING 
INDIVIDUAL RESPONSE TO TREATMENT

Conducting molecular genetic studies among patients 
with already diagnosed T2DM may also be useful in order 
to predict individual response to treatment. Genetic 
information can be used to identify subgroups that have 
similar responses to various preventive intervention and 
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treatments to develop personalized therapeutic strategy 
for patients with T2DM [18].

It is known, that the  same glucose- lowering therapy 
regimen may have different efficacy even in 2 phenotypically 
similar patients. This individual variability may be related to 
specific polymorphisms of genes involved in the metabolism 
and transport of antidiabetic drugs in the human body, as 
well as influencing the  strength of  the pharmacological 
effect  [6]. Thus, a  decrease in  the effectiveness of  oral 
glucose- lowering agents in  carriers of  certain mutated 
alleles of  genes involved in  the pharmacokinetics and 
pharmacogenomics of  medications was demonstrated 
in  the GoDART (Genetics of  Diabetes Audit and Research 
in Tayside) study, in  the genetic parts of  UKPDS (The UK 
Prospective Diabetes Study) and DPP [7].

Today, the  question of  the influence of  genetics on 
the efficacy and tolerability of antihyperglycemic therapy 
is well studied in relation to the most studied and widely 
used classes of oral antidiabetic medications – metformin 
and sulfonylureas (SU). Unfortunately, metformin (a first-
line treatment for T2DM) has a high variability in efficacy 
in  different patients. And the  endocrinologist should 
supplement the treatment regimen with other hypoglycemic 
drugs to achieve optimal glycemic control. According to 
clinical studies, some polymorphisms in  genes SLC22A1, 
SLC22A2, SLC47A1, SLC47A2  and ATM affect the effective-
ness of  metformin. For example, SNP rs12208357, 
rs34130495, rs34059508, rs72552763, rs622342  variants 
in  SLT22A1  were associated with a  decrease in  the 
effectiveness of  the metfofmin hypoglycemic effect, as 
well as with an increase in  its renal clearance. It is 
interesting, that SNP rs683369 variant in SLC22A1 correlated 
with a 31% reduction in the risk of diabetes in participants 
taking metformin compared with placebo in DPP study. The 
researchers also studied the effect of gene polymorphisms 
of the MATE (multidrug and toxin extrusion) family proteins 
on the  effectiveness of  metformin. They chose these 
proteins, because MATE1 (gene SLC47A1) and MATE2 (gene 
SLC47A2) they carry out transmembrane transport 
of  metformin molecules from the  cells of  the renal 
epithelium into the  lumen of  the renal tubules. And they 
found that SNP rs2289669  and rs8065082  variants 
in  SLC47A1  were associated with increased therapeutic 
effect of  metformin. The Finnish DPP study also showed 
a decrease in the incidence of transformation of  impaired 
glucose tolerance into T2DM in  obese individuals with 
the  minor allele of  the SNP rs8065082  C>T in  SLC47A1 
[6, 7, 18]. Thus, genetic variants associated with the response 
to metformin therapy can be used to predict the effectiveness 
of  treatment in  patients with T2DM, including already at 
the  onset of  the disease, as well as in  patients with 
prediabetes.

Some polymorphic variants also affect 
the  pharmacokinetics and/or pharmacodynamics of  SU, 
for example polymorphisms of KCNJ11, ABCC8, IRIS1, TCF7L2, 
KCNQ1, CDKAL1  and CAPN10. Thus, carriage of  SNP 
in  TCF7L2  (rs7903146) was a  predictor of  a less effective 
response to treatment with SU. Conversely, genetic variants 

of  ABCC8  and KCNJ11  are associated with a  stronger 
therapeutic response to SU. It is well known, that SU act 
through binding to the  SUR1  subunit (coding by gene 
ABCC8), which promotes the  closure of  ATP-sensitive 
potassium channels and membrane depolarization. Then it 
leads to an increase in calcium influx into the pancreatic 
β-cells and an increase in insulin secretion. Another subunit 
of  ATP-sensitive potassium channels is Kir6.2, which is 
encoded by the KCNJ11 gene. This gene is located in close 
proximity to ABCC8  on chromosome 11. The study of  the 
polymorphism of these genes found a common haplotype 
E23K in KCNJ11 and S1369A in ABCC8, which was associated 
with T2DM. This haplotype is less sensitive to the  action 
of  SU. The carriage of  specific polymorphic variants 
of  IRS-1 and NOS1AP are also associated with a decrease 
in the effectiveness of SU. It should be taken into account 
in choosing glucose- lowering therapy [6, 7, 18, 48].

The variability of enzymes that metabolize SU can also 
change their effectiveness and the risk of developing adverse 
effects of  therapy. SU is metabolized in  the liver by 
the  cytochrome P450  system (isoenzyme 2C9), which is 
encoded by CYP2C9. This gene has the  major allele 
CYP2C9*1  and 2  minor variants Arg144Cys (CYP2C9*2) and 
Ile359Leu (CYP2C9*3). GoDARTS demonstrated, that carriers 
of minor variants of CYP2C9 had a greater decrease in HbA1c 
level compared with homozygous carriers of the major allele 
CYP2C9*1. Carriers of minor SNP of CYP2C9 were 3.4  times 
more likely to reach the  target level of  HbA1c <7%. This 
association was confirmed by genetic analysis of the database 
of  the Rotterdam Study and the Dutch DCS West Friesland 
Study. It is important that CYP2C9*2  and CYP2C9*3 
polymorphisms are associated with increased serum 
sulfonylurea levels, which leads to an increased risk 
of hypoglycemia in carriers of minor variants of this gene. In 
this regard, SU should be administered with caution and at 
a lower dosage if the patient is a known carrier of polymorphic 
variants of CYP2C9*2 (I359L) or CYP2C9*3 (R114C) [6, 7, 18, 48].

The influence of various genetic variants on the efficacy 
and tolerability of  thiazolidinediones (TZD) has also been 
well studied. It was shown that the  effectiveness of  the 
action of  TZD is mainly genetically mediated by 
the  polymorphism of  PРARγ. A  well-studied Pro12Ala 
polymorphic variant in  PPAR-γ has been associated with 
decreased fasting blood glucose and HbA1c levels 
in response to rosiglitazone in several studies. In addition, 
the carriage of certain polymorphisms in CYP2C8, SLCO1B1, 
TCF7L2, CYP3A4, IGF2BP2, SLC30A8, KCNQ1, KCNJ11, NAMPT, 
UCP2, MDR1, NeuroD1, Pax4 affects the effectiveness of TZD 
therapy. Recent studies have also reported about several 
significant mutations in genes whose products are involved 
in  the pharmacogenetics of  thiazolidinediones (PGC-1α, 
resistin, adiponectin, leptin, TNF-alpha and CYP2C8). And 
according to other researchers, the carriage of the A1196G 
(CYP2C8*3) allele in  the gene encoding cytochrome 
P4502C8 is associated with a lower level of TZD in blood 
plasma. Because of  this, there is a  weaker therapeutic 
response, but a  lower risk of  developing edema during 
therapy at the  same time. When we talk about adverse 
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events with TZD, it’s worth mentioning that the risk of fluid 
retention and worsening symptoms of  heart failure limit 
their widespread use. And recently, genetic variants that 
predispose to the development of these side effects have 
been identified. So, AQP2  (aquaporin 2) rs296766  allele T 
and SLC12A1  (sodium/potassium/chloride transporter) 
rs12904216  allele G were associated with a  high risk 
of edema in patients taking glitazones [6, 7, 18, 46, 48]. 

There are only limited data on the  pharmacogenetics 
of  innovative hypoglycemic drugs. But, there are already 
active researches in  this area, and the  results of  several 
of  them have already been published. So, L. Hart et  al. 
studied the effect of CTRB1/2, which determines the effect 
of  chymotrypsin on the  effectiveness of  incretin based 
treatment. They found that the SNP rs7202877 in CTRB1/2 is 
associated with an absolute decrease in  HbA1c by 
0.51 ± 0.16% in homozygotes for the minor G allele when 
they taking DPP-4 inhibitors. This effect was not determine, 
when GLP-1  agonists were administered. In addition, 
polymorphism of GLP1R, encoding the GLP-1 receptor , has 
a effect on the effectiveness of therapy with GLP-1 agonists. 
Carrying allele A  in  rs10423928  is associated with 
a statistically significant decrease in insulin secretion and 
a decrease in the incretin effect of the therapy [7, 48].

CONCLUSION

The discovery of new knowledge in  the field of T2DM 
genetics contributes to the emergence of new opportunities 
for  a personalized approach in  the management of  this 
complex disease. One of  the perspective directions is 
the  use of  the results of  genome-wide studies to clarify 
the  etiology and pathological metabolic pathways 
underlying the development of T2DM. In addition, genetic 
testing can be used to separate patients with T2DM into 
specific clusters and / or endophenotypes. It will improve 
our understanding of the pathogenesis of this disease and 
allow the  development of  personalized preventive 
measures, aimed at reducing the  risk of  implementing 
a  genetic predisposition to T2DM by influencing certain 
“critical” pathological pathways. Researchers also have high 
hopes for  improving the  accuracy of  predictive models 
of metabolic risk disorders using genetic risk assessment. 
Advances in  pharmacogenomics will allow clinicians to 
administer personalized therapy regimens to increase its 
effectiveness and reduce the risk of adverse events. 
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