Preview

Медицинский Совет

Расширенный поиск

Вкусовые рецепторы – наши посредники в формировании вкусовых предпочтений ребенка

https://doi.org/10.21518/2079-701X-2018-17-50-55

Полный текст:

Аннотация

В статье представлены современные данные об основных молекулярных и генетических детерминантах формирования вкусовых предпочтений человека. Рассмотрена структура и механизм функционирования рецепторов сладкого вкуса, вкуса умами, кислого и горького вкусов, а также других молекул и клеточных структур, влияющих на восприятие вкусов, – белка густина, толлподобных рецепторов. Описана роль структур, обеспечивающих восприятие вкуса вне полости рта, – клеток гипоталамуса. Подчеркнуто значение генетического полиморфизма данных структур и важность взаимодействия генетических факторов и факторов внешней среды в формировании вкусовых предпочтений и пищевого поведения младенца. Особое внимание уделено практической значимости представленных данных в аспекте введения продуктов прикорма детям первого года жизни.

Об авторах

И. Н. Захарова
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России
Россия

Захарова Ирина Николаевна – доктор медицинских наук, профессор, заслуженный врач России, заведующая кафедрой педиатрии с курсом поликлинической педиатрии им. академика Г.Н. Сперанского ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» МЗ РФ, полный член EAACI, ESPGHAN

Москва



А. Н. Касьянова
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России
Россия

Касьянова Анна Николаевна – клинический ординатор кафедры педиатрии с курсом поликлинической педиатрии им. академика Г.Н. Сперанского

Москва



Ю. А. Дмитриева
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России
Россия

Дмитриева Юлия Андреевна – кандидат медицинских наук, доцент кафедры педиатрии с курсом поликлинической педиатрии имени академика Г.Н. Сперанского

Москва



Е. Б. Мачнева
Российская детская клиническая больница, ФГБОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия

Мачнева Елена Борисовна – кандидат медицинских наук

Москва



Список литературы

1. Kinnamon S.C. Taste receptor signalling – from tongues to lungs. Acta Physiol (Oxf) 2012; 204 (2):158–168. doi: 10.1111/j.1748-1716.2011.02308.x.

2. Cui M., Jiang P., Maillet E., Max M., Margolskee R.F., Osman R. The heterodimeric sweet taste receptor has multiple potential ligand binding sites. Curr Pharm Des. 2006; 12 (35): 4591–4600.

3. Max M., Shanker Y.G., Huang L., Rong M., Liu Z., Campagne F., Weinstein H., Damak S, Margolskee R.F. Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nat Genet. 2001; 28 (1): 58–63. doi: 10.1038/88270.

4. Ozeck M., Brust P., Xu H., Servant G. Receptors for bitter, sweet and umami taste couple to inhibitory G protein signaling pathways. Eur J Pharmacol. 2004; 489 (3): 139–149. doi: 10.1016/j.ejphar.2004.03.004.

5. He W., Yasumatsu K., Varadarajan V., Yamada A., Lem J., Ninomiya Y., Margolskee R.F., Damak S. Umami taste responses are mediated by alphatransducin and alpha-gustducin. J Neurosci. 2004; 24 (35): 7674–7680. doi: 10.1523/JNEUROSCI.2441-04.2004.

6. Li X., Staszewski L., Xu H., Durick K., Zoller M., Adler E. Human receptors for sweet and umami taste. Proc Natl Acad Sci U S A. 2002; 99(7): 4692–4696. doi: 10.1073/pnas.072090199.072090199.

7. Benarroch E.E. Acid-sensing cation channels: Structure, function, and pathophysiologic implications. Neurology. 2014; 82 (7):628–635. doi: 10.1212/WNL.0000000000000134.

8. Holzer P. Acid-sensitive ion channels and receptors. Handb Exp Pharmacol. 2009; (194): 283–332. doi: 10.1007/978-3-540-79090-7_9.

9. Kinnamon S.C., Margolskee R.F. Mechanisms of taste transduction. Curr Opin Neurobiol. 1996; 6 (4): 506–513.

10. Margolskee R.F. The molecular biology of taste transduction. Bioessays. 1993; 15 (10): 645–650. doi: 10.1002/bies.950151003.

11. Robert J. Lee, Noam A.C. Taste Receptors in Innate Immunity. Cell Mol Life Sci. 2016; 172(2): 217–236. doi: 10.1007/s00018-014-1736-7.

12. Margolskee R.F. Molecular mechanisms of bitter and sweet taste transduction. J Biol Chem. 2002; 277 (1): 1–4. doi: 10.1074/jbc.R100054200.

13. Scott K. The sweet and the bitter of mammalian taste. Curr Opin Neurobiol. 2004; 14 (4):423– 427. doi: 10.1016/j.conb.2004.06.003.

14. Iwata S., Yoshida R., Ninomiya Y. Taste transductions in taste receptor cells: basic tastes and moreover. Curr Pharm Des. 2014; 20 (16): 2684– 2692.

15. Zhang Y., Hoon M.A., Chandrashekar J, Mueller K.L., Cook B., Wu D., Zuker C.S., Ryba N.J. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell. 2003; 112 (3): 293–301.

16. Kautiainen A. Determination of hemoglobin adducts from aldehydes formed during lipid peroxidation in vitro. Chem Biol Interact. 1992 Jun 15; 83(1):55-63.

17. Chandrashekar J., Mueller K.L., Hoon M.A., Adler E., Feng L., Guo W., Zuker C.S., Ryba N.J. T2Rs function as bitter taste receptors. Cell. 2000 Mar 17; 100(6):703-11.

18. Deshpande D.A., Wang W.C., McIlmoyle E.L., Robinett K.S., Schillinger R.M., An S.S., Sham J.S., Liggett S.B. Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat Med. 2010 Nov; 16(11): 1299-304.

19. Deshpande D.A., Wang W.C., McIlmoyle E.L., Robinett K.S., Schillinger R.M., An S.S., Sham J.S., Liggett S.B. Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat Med. 2010 Nov; 16(11): 1299-304.

20. Wolfle U., Elsholz F.A., Kersten A., Haarhaus B., Schumacher U., Schempp C.M. Expression and Functional Activity of the Human Bitter Taste Receptor TAS2R38 in Human Placental Tissues and JEG-3 Cells. Molecules. 2016 Mar 3; 21(3):306.

21. Rajkumar P., Aisenberg W.H., Acres O.W., Protzko R.J., Pluznick JLIdentification and characterization of novel renal sensory receptors. PLoS One. 2014; 9(10):e111053.

22. Lu P., Zhang C., Lifshitz L.M. Extraoral bitter taste receptors in health and disease. J Gen Physiol. 2017 Feb; 149(2): 181– 197. doi: 10.1085/jgp.201611637.

23. Finger T.E., Danilova V., Barrows J., Bartel D.L., Vigers A.J., Stone L., Hellekant G., Kinnamon S.C. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science. 2005 Dec 2; 310(5753): 1495-9.

24. Taruno A., Vingtdeux V., Ohmoto M., Ma Z., Dvoryanchikov G., Li A., Adrien L., Zhao H., Leung S., Abernethy M., Koppel J., Davies P., Civan M.M., Chaudhari N., Matsumoto I., Hellekant G., Tordoff M.G., Marambaud P., Foskett J.K. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature. 2013 Mar 14; 495(7440):223-6.

25. Kim U.K., Jorgenson E., Coon H., Leppert M., Risch N., Drayna D. Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science. 2003 Feb 21; 299(5610): 1221-5.

26. Keller K.L., Olsen A., Kuilema L., Meyermann K., Belle C.V. Predictors of parental perceptions and concerns about child weight. Appetite. 2013; 62: 96–102.

27. Bachmanov A.A., Beauchamp G.K. Taste receptor genes. Annu Rev Nutr. 2007; 27(): 389-414.

28. Biarnes X., Marchiori A., Giorgetti A., Lanzara C., Gasparini P., Carloni P., Born S., Brockhoff A., Behrens M., Meyerhof W. Insights into the binding of Phenyltiocarbamide (PTC) agonist to its target human TAS2R38 bitter receptor. PLoS One. 2010; 5(8):e12394.

29. Wooding S., Kim U.K., Bamshad M.J., Larsen J., Jorde L.B., Drayna D. Natural selection and molecular evolution in PTC, a bitter-taste receptor gene. Am J Hum Genet. 2004; 74(4): 637-46.

30. Duffy V.B. Variation in oral sensation: implications for diet and health. Curr Opin Gastroenterol. 2007; 23(2):171-7.

31. Patrikainen M., Pan P., Kulesskaya N., Voikar V., Parkkila S. The role of carbonic anhydrase VI in bitter taste perception: evidence from the Car6−/− mouse model. J Biomed Sci. 2014; 21(1): 82. Published online 2014 Aug 19. doi: 10.1186/s12929-014-0082-2.

32. Kadoya Y., Kuwahara H., Shimazaki M., Ogawa Y., Yagi T. Isolation of a novel carbonic anhydrase from human saliva and immunohistochemical demonstration of its related isozymes in salivary gland. Osaka City Med J. 1987; 33: 99–109.

33. Parkkila S., Kaunisto K., Rajaniemi L., Kumpulainen T., Jokinen K., Rajaniemi H. Immunohistochemical localization of carbonic anhydrase isoenzymes VI, II, and I in human parotid and submandibular glands. J Histochem Cytochem. 1990; 38: 941–947. doi: 10.1177/38.7.2113069.

34. Padiglia A., Zonza A., Atzori E., Chillotti C., Calo C., Tepper B.J., Barbarossa I.T. Sensitivity to 6-n-propylthiouracil is associated with gustin (carbonic anhydrase VI) gene polymorphism, salivary zinc, and body mass index in humans. Am J Clin Nutr. 2010; 92(3): 539-45.

35. Camandola S., Mattson M.P. Toll-like Receptor 4 Mediates Fat, Sugar and Umami Taste Preference, and Food Intake and Body Weight Regulation. Obesity (Silver Spring). 2017; 25(7): 1237–1245. doi: 10.1002/oby.21871.

36. Feng P., Zhao H., Chai J. Expression and secretion of TNF-α in mouse taste buds: a novel function of a specific subset of type II taste cells. PLoS ONE. 2012; 7: e43140.

37. Feng P., Chai J., Zhou M.. Interleukin-10 is produced by a specific subset of taste receptor cells and critical for maintaining integrity of mouse taste buds. J Neurosci. 2014; 34: 2689–2701.

38. Feng P., Jyotaki M., Kim A.l. Regulation of bitter taste responses by tumor necrosis factor. Brain Behav Immun. 2015; 49: 32–42.

39. Velloso L.A., Folli F., Saad M.J. TLR4 at the Crossroads of Nutrients, Gut Microbiota, and Metabolic Inflammation. Endocr Rev. 2015 Jun; 36(3): 245-71.

40. Silverstein R.L., Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal. 2009; 2: re3.

41. Laugerette F., Passilly-Degrace P., Patris B. CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J ClinInvest. 2005; 115: 3177–3184.

42. Martin C., Passilly-Degrace P., Gaillard D. The lipid sensor candidates CD36 and GPR120 are differentially regulated by dietary lipids in mouse taste buds: impact on spontaneous fat preference. PLoS One. 2011; 2: e24014.

43. Pepino M.Y., Love-Gregory L., Klein S., Abumrad N.A. The fatty acid translocase gene CD36 and lingual lipase influence oral sensitivity to fat in obese subjects. J LipidRes. 2012; 53: 561–566.

44. Diogenes A., Ferraz C.C., Akopian A.N. LPS sensitize TRPV1 via activation of TLR4 in trigeminal sensory neurons. J Dent Res. 2011; 90: 759– 764.

45. Min H., Lee H., Lim H. TLR4 enhances histaminemediated pruritus by potentiating TRPV1 activity. Molecular Brain. 2014; 7: 59.

46. Lazutkaite G., Solda A., Lossow K., Meyerhof W., Dale N. Amino acid sensing in hypothalamic tanycytes via umami taste receptors. Mol Metab. 2017 Nov; 6(11): 1480–1492. Published online 2017 Sep 14. doi: 10.1016/j.molmet.2017.08.015.

47. Cota D., Proulx K., Smith K.A.B., Kozma S.C., Thomas G., Woods S.C. Hypothalamic mTOR signaling regulates food intake. Science. 2006; 312: 927e930.

48. Bolborea M., Dale N. Hypothalamic tanycytes: potential roles in the control of feeding and energy balance. Trends in Neurosciences. 2013; 36: 91e100.

49. Garcia M.D.L.A., Millan C., Balmaceda-Aguilera C., Castro T., Pastor P., Montecinos H. Hypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing. Journal of Neurochemistry. 2003; 86: 709e724.

50. Benford H., Bolborea M., Pollatzek E., Lossow K., Hermans-Borgmeyer I., Liu B. A sweet taste receptor-dependent mechanism of glucosensing in hypothalamic tanycytes. Glia. 2017; 65:773e789.

51. Huang T., Zheng Y., Hruby A., Williamson D.A., Bray G.A., Shen Y., Sacks F.M., Qi L. Dietary Protein Modifies the Effect of the MC4R Genotype on 2-Year Changes in Appetite and Food Craving: The POUNDS Lost Trial. J Nutr. 2017 Mar; 147(3): 439–444. Published online 2017 Feb 1. doi: 10.3945/jn.116.242958.

52. Valladares M., Dominguez-Vasquez P., Obregon A.M., Weisstaub G., Burrows R., Maiz A.Melanocortin4 receptor gene variants in Chilean families: association with childhood obesity and eating behavior. Nutr Neurosci, 2010,13(2): 71–78. doi: 10.1179/147683010X12611460763643.

53. Vega J.A., Salazar G., Hodgson M.I., Cataldo L.R., Valladares M., Obregon A.M. Melanocortin-4 Receptor Gene Variation Is Associated with Eating Behavior in Chilean Adults. Ann Nutr Metab, 2016, 68(1): 35–41. doi: 10.1159/000439092.

54. Wang S., Song J., Yang Y., Chawla N.V., Ma J., Wang H. Rs12970134 near MC4R is associated with appetite and beverage intake in overweight and obese children: A family-based association study in Chinese population. PLoS One. 2017; 12(5): e0177983. Published online 2017 May 16. doi: 10.1371/journal.pone.0177983.

55. Negri R., Di Feola M., Di Domenico S., Scala M.G., Artesi G., Valente S., Smarrazzo A., Turco F., Morini G., Greco L. Taste perception and food choices. J Pediatr Gastroenterol Nutr. 2012 May; 54(5): 624-9.


Просмотров: 93


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)