Preview

Медицинский Совет

Расширенный поиск

Роль аларминов в патогенезе псориаза

https://doi.org/10.21518/ms2023-276

Полный текст:

Аннотация

Алармины – это группа иммуноактивирующих белков и пептидов, которые, взаимодействуя с иммунными клетками, инициируют воспалительный процесс. Биосинтез аларминов происходит в поврежденных клетках, нередко как результат протеолиза нативных белков. Наиболее часто высвобождение аларминов в межклеточный матрикс может быть следствием инфекции, ожога или травмы. В  последнее время были проведены исследования роли аларминов в  патогенезе аутоиммунных заболеваний. Целью данной работы было оценить клинический потенциал аларминов и охарактеризовать их роль в патогенезе псориаза. В предлагаемом обзоре проанализированы 6 групп аларминов с повышенной экспрессией в коже больных псориазом: дефензины, CAMP / LL-37, амфотерин / HMGB1, обладающие свойствами аларминов представители семейства интерлейкин-1 подобных цитокинов (IL1 и -33), белки теплового шока, а также белки, относящиеся к семейству S100. В представленной работе мы также обсуждаем терапевтический потенциал аларминов: возможность их использования в качестве объекта медикаментозного воздействия, а также для диагностики и мониторинга псориаза. Предположительно, что в будущих экспериментальных исследованиях будет уделено значительное внимание рецепторам аларминов, а также участникам активируемых ими сигнальных путей. Результаты этих работ позволят получить биологически активные соединения, которые будут способны специфично и эффективно подавлять физиологические эффекты аларминов, а также контролировать вызываемый ими воспалительный процесс. Представляется очевидным, что использование антагонистов аларминов в клинической практике окажется полезным при лечении как псориаза, так и других хронических аутоиммунных заболеваний, в особенности в тех случаях, когда наиболее часто применяемые методы лечения недостаточно эффективны.

Об авторах

А. В. Мезенцев
Центр теоретических проблем физико-химической фармакологии РАН
Россия

Мезенцев Александр Викторович, к.б.н., старший научный сотрудник, 

109029, Москва, ул. Средняя Калитниковская, д. 30



Е. В. Денисова
Центр теоретических проблем физико-химической фармакологии РАН
Россия

Денисова Елена Валерьевна, к.м.н., старший научный сотрудник,

109029, Москва, ул. Средняя Калитниковская, д. 30



В. В. Соболев
Центр теоретических проблем физико-химической фармакологии РАН; Научно-исследовательский институт вакцин и сывороток имени И.И. Мечникова
Россия

Соболев Владимир Васильевич, к.б.н., старший научный сотрудник, 109029, Москва, ул. Средняя Калитниковская, д. 30;

старший научный сотрудник, 105064, Москва, Малый Казенный переулок, д. 5а



И. М. Корсунская
Центр теоретических проблем физико-химической фармакологии РАН
Россия

Корсунская Ирина Марковна, д.м.н., профессор, заведующая лабораторией физико-химических и  генетических проблем дерматологии,

109029, Москва, ул. Средняя Калитниковская, д. 30



Список литературы

1. Oppenheim JJ, Yang D. Alarmins: chemotactic activators of immune responses. Curr Opin Immunol. 2005;17(4):359–365. https://doi.org/10.1016/j.coi.2005.06.002.

2. Yang D, Han Z, Oppenheim JJ. Alarmins and immunity. Immunol Rev. 2017;280(1):41–56. https://doi.org/10.1111/imr.12577.

3. Mogulevtseva JA, Mezentsev AV, Bruskin SA. The role of matrix metalloproteinases in the pathogenesis of psoriasis. In: Goodwin L (ed.). A closer look at metalloproteinases. Hauppauge: Nova Science Publishers; 2019, pp. 97–130. Available at: https://novapublishers.com/shop/a-closer-look-at-metalloproteinases/.

4. Borsky P, Fiala Z, Andrys C, Beranek M, Hamakova K, Malkova A et al. Alarmins HMGB1, IL-33, S100A7, and S100A12 in psoriasis vulgaris. Mediators Inflamm. 2020;2020:8465083. https://doi.org/10.1155/2020/8465083.

5. Borska L, Kremlacek J, Andrys C, Krejsek J, Hamakova K, Borsky P et al. Systemic inflammation, oxidative damage to nucleic acids, and metabolic syndrome in the pathogenesis of psoriasis. Int J Mol Sci. 2017;18(11):2238. https://doi.org/10.3390/ijms18112238.

6. Chan JK, Roth J, Oppenheim JJ, Tracey KJ, Vogl T, Feldmann M et al. Alarmins: awaiting a clinical response. J Clin Invest. 2012;122(8): 2711–2719. https://doi.org/10.1172/JCI62423.

7. Соболева АГ, Мезенцев АВ, Брускин СА. Генетически модифицированные животные как модели патологического процесса при псориазе. Молекулярная биология. 2014;48(4):587–599. https://doi.org/10.7868/S0026898414040156. Soboleva AG, Mezentsev AV, Bruskin SA. Genetically modified animals as models pathological processes in psoriasis. Molekulyarnaya Biologiya. 2014;48(4):587–599. (In Russ.) https://doi.org/10.7868/S0026898414040156.

8. Land WG. Use of DAMPs and SAMPs as Therapeutic targets or therapeutics: a note of caution. Mol Diagn Ther. 2020;24(3):251–262. https://doi.org/10.1007/s40291-020-00460-z.

9. Parisi R, Iskandar IYK, Kontopantelis E, Augustin M, Griffiths CEM, Ashcroft DM. National, regional, and worldwide epidemiology of psoriasis: systematic analysis and modelling study. BMJ. 2020;369:m1590. https://doi.org/10.1136/bmj.m1590.

10. Ahad T, Agius E. The Koebner phenomenon. Br J Hosp Med (Lond). 2015;76(11):170–172. https://doi.org/10.12968/hmed.2015.76.11.C170.

11. Yamazaki F. Psoriasis: comorbidities. J Dermatol. 2021;48(6):732–740. https://doi.org/10.1111/1346-8138.15840.

12. Kim BY, Choi JW, Kim BR, Youn SW. Histopathological findings are associated with the clinical types of psoriasis but not with the corresponding lesional psoriasis severity index. Ann Dermatol. 2015;27(1):26–31. https://doi.org/10.5021/ad.2015.27.1.26.

13. Lowes MA, Suárez-Fariñas M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol. 2014;32:227–255. https://doi.org/10.1146/annurevimmunol-032713-120225.

14. Yamanishi K, Imai Y. Alarmins/stressorins and immune dysregulation in intractable skin disorders. Allergol Int. 2021;70(4):421–429. https://doi.org/10.1016/j.alit.2021.05.005.

15. Elias PM. Stratum corneum defensive functions: an integrated view. J Invest Dermatol. 2005;125(2):183–200. https://doi.org/10.1111/j.0022-202X.2005.23668.x.

16. Harder J, Bartels J, Christophers E, Schröder JM. A peptide antibiotic from human skin. Nature. 1997;387(6636):861. https://doi.org/10.1038/43088.

17. Johansen C, Bertelsen T, Ljungberg C, Mose M, Iversen L. Characterization of TNF-α- and IL-17A-mediated synergistic induction of DEFB4 gene expression in human keratinocytes through IκBζ. J Invest Dermatol. 2016;136(8):1608–1616. https://doi.org/10.1016/j.jid.2016.04.012.

18. Takahashi T, Yamasaki K. Psoriasis and antimicrobial peptides. Int J Mol Sci. 2020;21(18):6791. https://doi.org/10.3390/ijms21186791.

19. Chiricozzi A, Guttman-Yassky E, Suárez-Fariñas M, Nograles KE, Tian S, Cardinale I et al. Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J Invest Dermatol. 2011;131(3):677–687. https://doi.org/10.1038/jid.2010.340.

20. Kolbinger F, Loesche C, Valentin MA, Jiang X, Cheng Y, Jarvis P et al. β-Defensin 2 is a responsive biomarker of IL-17A-driven skin pathology in patients with psoriasis. J Allergy Clin Immunol. 2017;139(3):923–932. e928. https://doi.org/10.1016/j.jaci.2016.06.038.

21. Liang SC, Tan XY, Luxenberg DP, Karim R Dunussi-Joannopoulos K, Collins M. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med. 2006;203(10):2271–2279. https://doi.org/10.1084/jem.20061308.

22. Jin T, Sun Z, Chen X, Wang Y, Li R, Ji S et al. Serum human beta-defensin-2 is a possible biomarker for monitoring response to JAK inhibitor in psoriasis patients. Dermatology. 2017;233(2–3):164–169. https://doi.org/10.1159/000475809.

23. Benham H, Norris P, Goodall J, Wechalekar MD, FitzGerald O, Szentpetery A et al. Th17 and Th22 cells in psoriatic arthritis and psoriasis. Arthritis Res Ther. 2013;15(5):R136. https://doi.org/10.1186/ar4317.

24. Cieślik M, Bagińska N, Górski A, Jończyk-Matysiak E. Human β-defensin 2 and its postulated role in modulation of the immune response. Cells. 2021;10(11):2991. https://doi.org/10.3390/cells10112991.

25. Ma JY, Shao S, Wang G. Antimicrobial peptides: bridging innate and adaptive immunity in the pathogenesis of psoriasis. Chin Med J (Engl). 2020;133(24): 2966–2975. https://doi.org/10.1097/CM9.0000000000001240.

26. Wang L, Quan Y, Yue Y, Heng X, Che F. Interleukin-37: a crucial cytokine with multiple roles in disease and potentially clinical therapy. Oncol Lett. 2018;15(4):4711–4719. https://doi.org/10.3892/ol.2018.7982.

27. Kiatsurayanon C, Niyonsaba F, Smithrithee R, Akiyama T, Ushio H, Hara M et al. Host defense (antimicrobial) peptide, human β-defensin-3, improves the function of the epithelial tight-junction barrier in human keratinocytes. J Invest Dermatol. 2014;134(8):2163–2173. https://doi.org/10.1038/jid.2014.143.

28. Zhang LJ, Sen GL, Ward NL, Johnston A, Chun K, Chen Y et al. Antimicrobial peptide LL37 and MAVS signaling drive interferon-β production by epidermal keratinocytes during skin injury. Immunity. 2016;45(1):119–130. https://doi.org/10.1016/j.immuni.2016.06.021.

29. Ganguly D, Chamilos G, Lande R, Gregorio J, Meller S, Facchinetti V et al. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med. 2009;206(9):1983–1994. https://doi.org/10.1084/jem.20090480.

30. Herster F, Bittner Z, Archer NK, Dickhöfer S, Eisel D, Eigenbrod T. et al. Neutrophil extracellular trap-associated RNA and LL37 enable self-amplifying inflammation in psoriasis. Nat Commun. 2020;11(1):105. https://doi.org/10.1038/s41467-019-13756-4.

31. Tewary P, de la Rosa G, Sharma N, Rodriguez LG, Tarasov SG, Howard OM et al. β-Defensin 2 and 3 promote the uptake of self or CpG DNA, enhance IFN-α production by human plasmacytoid dendritic cells, and promote inflammation. J Immunol. 2013;191(2):865–874. https://doi.org/10.4049/jimmunol.1201648.

32. Nestle FO, Conrad C, Tun-Kyi A, Homey B, Gombert M, Boyman O et al. Plasmacytoid predendritic cells initiate psoriasis through interferonalpha production. J Exp Med. 2005;202(1):135–143. https://doi.org/10.1084/jem.20050500.

33. Lande R, Botti E, Jandus C, Dojcinovic D, Fanelli G, Conrad C et al. The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat Commun. 2014;5:5621. https://doi.org/10.1038/ncomms6621.

34. Mabuchi T, Hirayama N. Binding Affinity and Interaction of LL-37 with HLA-C*06:02 in psoriasis. J Invest Dermatol. 2016;136(9):1901–1903. https://doi.org/10.1016/j.jid.2016.04.033.

35. Ivanov S, Dragoi AM, Wang X, Dallacosta C, Louten J, Musco G et al. A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood. 2007;110(6):1970–1981. https://doi.org/10.1182/blood-2006-09-044776.

36. Farrugia M, Baron B. The role of toll-like receptors in autoimmune diseases through failure of the self-recognition mechanism. Int J Inflam. 2017;2017:8391230. https://doi.org/10.1155/2017/8391230.

37. Bergmann C, Strohbuecker L, Lotfi R, Sucker A, Joosten I, Koenen H et al. High mobility group box 1 is increased in the sera of psoriatic patients with disease progression. J Eur Acad Dermatol Venereol. 2016;30(3):435–441. https://doi.org/10.1111/jdv.13564.

38. Zickert A, Palmblad K, Sundelin B, Chavan S, Tracey KJ, Bruchfeld A et al. Renal expression and serum levels of high mobility group box 1 protein in lupus nephritis. Arthritis Res Ther. 2012;14(1):R36. https://doi.org/10.1186/ar3747.

39. Andersson U, Harris HE. The role of HMGB1 in the pathogenesis of rheumatic disease. Biochim Biophys Acta. 2010;1799(1–2):141–148. https://doi.org/10.1016/j.bbagrm.2009.11.003.

40. Kavita U, Mizel SB. Differential sensitivity of interleukin-1 alpha and -beta precursor proteins to cleavage by calpain, a calcium-dependent protease. J Biol Chem. 1995;270(46):27758–27765. https://doi.org/10.1074/jbc.270.46.27758.

41. England H, Summersgill HR, Edye ME, Rothwell NJ, Brough D. Release of interleukin-1α or interleukin-1β depends on mechanism of cell death. J Biol Chem. 2014;289(23):15942–15950. https://doi.org/10.1074/jbc.M114.557561.

42. Martin P, Goldstein JD, Mermoud L, Diaz-Barreiro A, Palmer G. IL-1 family antagonists in mouse and human skin inflammation. Front Immunol. 2021;12:652846. https://doi.org/10.3389/fimmu.2021.652846.

43. Lefrançais E, Roga S, Gautier V, Gonzalez-de-Peredo A, Monsarrat B, Girard JP et al. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc Natl Acad Sci U S A 2012;109(5): 1673–1678. https://doi.org/10.1073/pnas.1115884109.

44. Griesenauer B, Paczesny S. The ST2/IL-33 axis in immune cells during inflammatory diseases. Front Immunol. 2017;8:475. https://doi.org/10.3389/fimmu.2017.00475.

45. Saluja R, Khan M, Church MK, Maurer M. The role of IL-33 and mast cells in allergy and inflammation. Clin Transl Allergy. 2015;5:33. https://doi.org/10.1186/s13601-015-0076-5.

46. Afferni C, Buccione C, Andreone S, Galdiero MR, Varricchi G, Marone G et al. The pleiotropic immunomodulatory functions of IL-33 and its implications in tumor immunity. Front Immunol. 2018;9:2601. https://doi.org/10.3389/fimmu.2018.02601.

47. Mitsui A, Tada Y, Takahashi T, Shibata S, Kamata M, Miyagaki T et al. Serum IL-33 levels are increased in patients with psoriasis. Clin Exp Dermatol. 2016;41(2):183–189. https://doi.org/10.1111/ced.12670.

48. Li J, Liu L, Rui W, Li X, Xuan D, Zheng S et al. New interleukins in psoriasis and psoriatic arthritis patients: the possible roles of interleukin-33 to interleukin-38 in disease activities and bone erosions. Dermatology. 2017;233(1):37–46. https://doi.org/10.1159/000471798.

49. Sehat M, Talaei R, Dadgostar E, Nikoueinejad H, Akbari H. Evaluating serum levels of IL-33, IL-36, IL-37 and gene expression of IL-37 in patients with psoriasis vulgaris. Iran J Allergy Asthma Immunol. 2018;17(2):179–187. Available at: https://pubmed.ncbi.nlm.nih.gov/29757591/.

50. Duan Y, Dong Y, Hu H, Wang Q, Guo S, Fu D et al. IL-33 contributes to disease severity in psoriasis-like models of mouse. Cytokine. 2019;119:159–167. https://doi.org/10.1016/j.cyto.2019.02.019.

51. Kikis EA, Gidalevitz T, Morimoto RI. Protein homeostasis in models of aging and age-related conformational disease. Adv Exp Med Biol. 2010;694:138–159. https://doi.org/10.1007/978-1-4419-7002-2_11.

52. Wick G, Jakic B, Buszko M, Wick MC, Grundtman C. The role of heat shock proteins in atherosclerosis. Nat Rev Cardiol. 2014;11(9):516–529. https://doi.org/10.1038/nrcardio.2014.91.

53. Lanneau D, de Thonel A, Maurel S, Didelot C, Garrido C. Apoptosis versus cell differentiation: role of heat shock proteins HSP90, HSP70 and HSP27. Prion. 2007;1(1):53–60. https://doi.org/10.4161/pri.1.1.4059.

54. Sobolev VV, Mezentsev AV, Ziganshin RH, Soboleva AG, Denieva M, Korsunskaya IM, Svitich OA. LC-MS/MS analysis of lesional and normally looking psoriatic skin reveals significant changes in protein metabolism and RNA processing. PLoS One. 2021;16(5):e0240956. https://doi.org/10.1371/journal.pone.0240956.

55. Damasiewicz-Bodzek A, Szumska M, Tyrpień-Golder K. Antibodies to heat shock proteins 90α and 90β in psoriasis. Arch Immunol Ther Exp (Warsz). 2020;68(2):9. https://doi.org/10.1007/s00005-020-00573-7.

56. Tukaj S, Sitko K. Heat shock protein 90 (Hsp90) and Hsp70 as potential therapeutic targets in autoimmune skin diseases. Biomolecules. 2022;12(8):1153. https://doi.org/10.3390/biom12081153.

57. Murshid A, Borges TJ, Bonorino C, Lang BJ, Calderwood SK. Immunological outcomes mediated upon binding of heat shock proteins to scavenger receptors SCARF1 and LOX-1, and endocytosis by mononuclear phagocytes. Front Immunol. 2020;10:3035. https://doi.org/10.3389/fimmu.2019.03035.

58. Murshid A, Gong J, Calderwood SK. The role of heat shock proteins in antigen cross presentation. Front Immunol. 2012;3:63. https://doi.org/10.3389/fimmu.2012.00063.

59. Stenderup K, Rosada C, Gavillet B, Vuagniaux G, Dam TN. Debio 0932, a new oral Hsp90 inhibitor, alleviates psoriasis in a xenograft transplantation model. Acta Derm Venereol. 2014;94(6):672–676. https://doi.org/10.2340/00015555-1838.

60. Ben Abdallah H, Seeler S, Bregnhøj A, Ghatnekar G, Kristensen LS, Iversen L et al. Heat shock protein 90 inhibitor RGRN-305 potently attenuates skin inflammation. Front Immunol. 2023;14:1128897. https://doi.org/10.3389/fimmu.2023.1128897.

61. Bregnhøj A, Thuesen KKH, Emmanuel T, Litman T, Grek CL, Ghatnekar GS et al. HSP90 inhibitor RGRN-305 for oral treatment of plaque-type psoriasis: efficacy, safety and biomarker results in an open-label proof-ofconcept study. Br J Dermatol. 2022;186(5):861–874. https://doi.org/10.1111/bjd.20880.

62. Raghuwanshi N, Yadav TC, Srivastava AK, Raj U, Varadwaj P, Pruthi V. Structure-based drug designing and identification of Woodfordia fruticosa inhibitors targeted against heat shock protein (HSP70-1) as suppressor for Imiquimod-induced psoriasis like skin inflammation in mice model. Mater Sci Eng C Mater Biol Appl. 2019;95:57–71. https://doi.org/10.1016/j.msec.2018.10.061.

63. Seifarth FG, Lax JE, Harvey J, DiCorleto PE, Husni ME, Chandrasekharan UM et al. Topical heat shock protein 70 prevents imiquimodinduced psoriasis-like inflammation in mice. Cell Stress Chaperones. 2018;23(5):1129–1135. https://doi.org/10.1007/s12192-018-0895-0.

64. van Eden W. Vaccination against autoimmune diseases moves closer to the clinic. Hum Vaccin Immunother. 2020;16(2):228–232. https://doi.org/10.1080/21645515.2019.1593085.

65. Bierkarre H, Harder J, Cuthbert R, Emery P, Leuschner I, Mrowietz U et al. Differential expression of antimicrobial peptides in psoriasis and psoriatic arthritis as a novel contributory mechanism for skin and joint disease heterogeneity. Scand J Rheumatol. 2016;45(3):188–196. https://doi.org/10.3109/03009742.2015.1091497.

66. Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ. Functions of S100 proteins. Curr Mol Med. 2013;13(1):24–57. Available at: https://pubmed.ncbi.nlm.nih.gov/22834835/.

67. Mezentsev AV, Bruskin SA, Soboleva AG, Sobolev VV, Piruzian ES. Pharmacological control of receptor of advanced glycation endproducts and its biological effects in psoriasis. Int J Biomed Sci. 2013;9(3):112–122. Available at: https://pubmed.ncbi.nlm.nih.gov/24170986/.

68. Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA et al. Mrp8 and Mrp14 are endogenous activators of toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med. 2007;13(9):1042–1049. https://doi.org/10.1038/nm1638.

69. Russo A, Schürmann H, Brandt M, Scholz K, Matos ALL, Grill D et al. Alarming and calming: opposing roles of S100A8/S100A9 dimers and tetramers on monocytes. Adv Sci (Weinh). 2022;9(36):e2201505. https://doi.org/10.1002/advs.202201505.

70. Benoit S, Toksoy A, Ahlmann M, Schmidt M, Sunderkötter C, Foell D et al. Elevated serum levels of calcium-binding S100 proteins A8 and A9 reflect disease activity and abnormal differentiation of keratinocytes in psoriasis. Br J Dermatol. 2006;155(1):62–66. https://doi. org/10.1111/j.1365-2133.2006.07198.x.

71. Wilsmann-Theis D, Wagenpfeil J, Holzinger D, Roth J, Koch S, Schnautz S et al. Among the S100 proteins, S100A12 is the most significant marker for psoriasis disease activity. J Eur Acad Dermatol Venereol. 2016;30(7):1165–1170. https://doi.org/10.1111/jdv.13269.

72. Kane D, Roth J, Frosch M, Vogl T, Bresnihan B., FitzGerald O. Increased perivascular synovial membrane expression of myeloid-related proteins in psoriatic arthritis. Arthritis Rheum. 2003;48(6):1676–1685. https://doi.org/10.1002/art.10988.

73. Anderson KS, Wong J, Polyak K, Aronzon D, Enerbäck C. Detection of psoriasin/ S100A7 in the sera of patients with psoriasis. Br J Dermatol. 2009;160(2): 325–332. https://doi.org/10.1111/j.1365-2133.2008.08904.x.

74. Iznardo H, Puig L. The interleukin-1 family cytokines in psoriasis: pathogenetic role and therapeutic perspectives. Expert Rev Clin Immunol. 2021;17(2):187–199. https://doi.org/10.1080/1744666X.2021.1886081.

75. Jiang W, Zhu FG, Bhagat L, Yu D, Tang JX, Kandimalla ER et al. A tolllike receptor 7, 8, and 9 antagonist inhibits Th1 and Th17 responses and inflammasome activation in a model of IL-23-induced psoriasis. J Invest Dermatol. 2013;133(7):1777–1784. https://doi.org/10.1038/jid.2013.57


Рецензия

Для цитирования:


Мезенцев А.В., Денисова Е.В., Соболев В.В., Корсунская И.М. Роль аларминов в патогенезе псориаза. Медицинский Совет. 2023;(14):62-70. https://doi.org/10.21518/ms2023-276

For citation:


Mezentsev A.V., Denisova E.V., Sobolev V.V., Korsunskaya I.M. The role of alarmins in the pathogenesis of psoriasis. Meditsinskiy sovet = Medical Council. 2023;(14):62-70. (In Russ.) https://doi.org/10.21518/ms2023-276

Просмотров: 112


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)