Preview

Медицинский Совет

Расширенный поиск

ОЖИРЕНИЕ И КИШЕЧНАЯ МИКРОБИОТА

https://doi.org/10.21518/2079-701X-2017-19-139-141

Полный текст:

Аннотация

В настоящее время существуют убедительные данные, свидетельствующие в пользу того, что микробиота желудочно-кишечного тракта обладает иммуномодулирующим и метаболическим воздействием на организм человека, а также определяет экспрессию отдельных генов посредством эпигенетических механизмов [1–3]. Особенности состава кишечной микробиоты могут предопределять особенности метаболизма макроорганизма, предрасполагая тем самым к развитию различных заболеваний, включая воспалительные заболевания кишечника, сахарный диабет 1-го типа, рассеянный склероз, расстройства аутистического спектра, сердечно-сосудистые и онкологические заболевания, метаболический синдром и ожирение [4, 5].

Об авторах

И. Н. Захарова
Российская медицинская академия непрерывного профессионального образования Минздрава России
Россия

д.м.н., профессор, 

Москва



И. В. Бережная
Российская медицинская академия непрерывного профессионального образования Минздрава России
Россия

к.м.н.,

Москва



Ю. А. Дмитриева
Российская медицинская академия непрерывного профессионального образования Минздрава России
Россия

к.м.н.,

Москва



Список литературы

1. Shenderov BA, Midtvedt T. Epigenomic programing: a future way to health? Microb Ecol Health Dis, 2014, 25: 24145.

2. Holmes E, Li JV, Marchesi JR, Nicholson JK. Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab, 2012, 16(5): 559–64.

3. Nicholson JK, Holmes E, Kinross J, et al. Hostgut microbiota metabolic interactions. Science. 2012,336(6086): 1262–7.

4. Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet, 2012, 13(4): 260–70.

5. O’Mahony SM, Stilling RM, Dinan TG, Cryan JF. The microbiome and childhood diseases: focus on brain-gut axis. Birth Defects Res C Embryo Today, 2015, 105(4): 296–313.

6. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006, 444(7122): 1027–31.

7. Turnbaugh PJ, Backhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe, 2008, 3(4): 213–23.

8. Armougom F, Henry M, Vialettes B, Raccah D, Raoult D. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS One, 2009, 4(9): e7125.

9. Slattery J, MacFabe DF, Frye RE. The Significance of the Enteric Microbiome on the Development of Childhood Disease: A Review of Prebiotic and Probiotic Therapies in Disorders of Childhood. Clin Med Insights Pediatr, 2016 Oct 9, 10: 91-107.

10. Ravussin Y, Koren O, Spor A et al. Responses of gut microbiota to diet composition and weight loss in lean and obese mice. Obesity (Silver Spring), 2012 Apr, 20(4): 738-47.

11. Riva A, Borgo F, Lassandro C, et al. Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. Environ Microbiol, 2016, 23(10): 1462–2920.

12. Bervoets L, Van Hoorenbeeck K, Kortleven I, et al. Differences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut Pathog, 2013, 5(1): 10.

13. Karlsson CL, Onnerfalt J, Xu J, et al. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity, 2012, 20(11): 2257–61.

14. Payne AN, Chassard C, Zimmermann M, Muller P, Stinca S, Lacroix C. The metabolic activity of gut microbiota in obese children is increased compared with normal-weight children and exhibits more exhaustive substrate utilization. Nutrit Diab, 2011, 1: e12.

15. Murphy E, Cotter P, Healy S et al. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut, 2010, 59(12): 1635–42.

16. Cromwell GL. Why and how antibiotics are used in swine production. Anim Biotechnol, 2002, 13(1): 7–27.

17. Cox LM, Yamanishi S, Sohn J, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell, 2014, 158(4): 705–21.

18. Trasande L, Blustein J, Liu M, Corwin E, Cox LM, Blaser MJ. Infant antibiotic exposures and earlylife body mass. Int J Obes, 2013, 37(1): 16–23.

19. Turnbaugh PJ, Ley RE, Mahowald MA et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006, 444: 1027-1031.

20. Martens EC. Microbiome: fibre for the future. Nature, 2016, 529: 158–159.

21. Ley RE, Turnbaugh PJ, Klein S et al. Microbial ecology: human gut microbes associated with obesity. Nature, 2006, 444: 1022–1023.

22. Santacruz A, Marcos A, Warnberg J et al. Interplay between weight loss and gut microbiota composition in overweight adolescents. Obesity (Silver Spring), 2009, 17: 1906–15.

23. Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature, 2013, 500(7464): 541–6.

24. Ghoshal S, Witta J, Zhong J, de Villiers W, Eckhardt E. Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res, 2009, 50(1): 90–97.

25. Martin R, Langa S, Reviriego C et al. Human milk is a source of lactic acid bacteria for the infant gut. J. Pediatr., 2003, 143: 754-8.

26. Cabrera-Rubio R, Collado MC, Laitinen K et al. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr, 2012, 96: 544–51.

27. Kalliomaki M, Collado MC, Salminen S et al. Early differences in fecal microbiota composition in children may predict overweight. Am. J. Clin. Nutr., 2008, 87: 534–538.

28. Cani PD, Neyrinck AM, Maton N et al. Oligofructose promotes satiety in rats fed a highfat diet: involvement of glucagon-like Peptide-1. Obes. Res., 2005, 13: 1000–1007.

29. Cani PD, Dewever C, Delzenne NM. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br. J. Nutr., 2004, 92: 521–526.

30. Cani PD, Neyrinck AM, Fava F et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia, 2007, 50: 2374–2383.

31. Luoto R, Kalliomaki M, Laitinen K, Isolauri E. The impact of perinatal probiotic intervention on the development of overweight and obesity: follow-up study from birth to 10 years. Int J Obes, 2010, 34(10): 1531–7.

32. Vajro P, Mandato C, Licenziati MR, et al. Effects of Lactobacillus rhamnosus strain GG in pediatric obesity-related liver disease. J Pediatr Gastroenterol Nutr, 2011, 52(6): 740–3.

33. Safavi M, Farajian S, Kelishadi R, Mirlohi M, Hashemipour M. The effects of synbiotic supplementation on some cardio-metabolic risk factors in overweight and obese children: a randomized triple-masked controlled trial. Int J Food Sci Nutr, 2013, 64(6): 687–93.


Для цитирования:


Захарова И.Н., Бережная И.В., Дмитриева Ю.А. ОЖИРЕНИЕ И КИШЕЧНАЯ МИКРОБИОТА. Медицинский Совет. 2017;(19):139-141. https://doi.org/10.21518/2079-701X-2017-19-139-141

For citation:


Zakharova I.N., Berezhnaya I.V., Dmitrieva Y.A. OBESITY AND INTESTINAL MICROBIOTA. Medical Council. 2017;(19):139-141. (In Russ.) https://doi.org/10.21518/2079-701X-2017-19-139-141

Просмотров: 434


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)