Preview

Медицинский Совет

Расширенный поиск

ВЕГЕТАТИВНАЯ ДИСФУНКЦИЯ И ЗАБОЛЕВАНИЯ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ У ДЕТЕЙ

https://doi.org/10.21518/2079-701X-2017-19-208-212

Полный текст:

Аннотация

В основе развития большинства кардиологических заболеваний, являющихся лидирующей причиной инвалидности и смертности во всем мире, лежит дисфункция вегетативной нервной системы. Вегетативная дизрегуляция является основным патогенетическим звеном синдромов ортостатической дизрегуляции, нейромедиаторных синкопальных состояний. Гиперактивность симпатоадреналового отдела вегетативной нервной системы способствует формированию сахарного диабета второго типа, метаболического синдрома и обструктивных нарушений дыхания во время сна, которые тесно ассоциированы с развитием сердечно-сосудистых заболеваний.

Об авторах

Т. М. Творогова
Российская медицинская академия непрерывного профессионального образования Минздрава России
Россия

к.м.н.,

Москва



И. Н. Захарова
Российская медицинская академия непрерывного профессионального образования Минздрава России
Россия

д.м.н., профессор,

Москва



И. И. Пшеничникова
Российская медицинская академия непрерывного профессионального образования Минздрава России
Россия
Москва


Список литературы

1. Thayer JF, Yamamoto SS, Brosschot JF. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. International journal of cardiology, 2010, 141(2): 122-131.

2. Школьникова М.А. Детская кардиология в России на рубеже столетий. Вестник аритмологии, 2000, 18: 15-19.

3. Gilman S et al. Consensus statement on the diagnosis of multiple system atrophy. Journal of the neurological sciences, 1999, 163(1): 94-98.

4. Perlmuter LC et al. A review of the etiology, asssociated comorbidities, and treatment of orthostatic hypotension. American journal of therapeutics, 2013, 20(3): 279-291.

5. Grubb BP. Postural tachycardia syndrome. Circulation, 2008, 117(21): 2814-2817.

6. National Institute of Health, Neurological Institute of Neurological Disorders and Stroke, Postural Tachycardia Syndrome Information Page.

7. Raj SR. The postural tachycardia syndrome (POTS): pathophysiology, diagnosis & management. Indian pacing and electrophysiology journal, 2006, 6(2): 84.

8. Freeman R et al. Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clinical Autonomic Research, 2011, 21(2): 69-72.

9. Singer W et al. Postural tachycardia in children and adolescents: what is abnormal? The Journal of pediatrics, 2012, 160(2): 222-226.

10. Bagai K et al. Estimation of sleep disturbances using wrist actigraphy in patients with postural tachycardia syndrome. Autonomic Neuroscience, 2013, 177(2): 260-265.

11. Pagani M, Lucini D. Chronic fatigue syndrome: a hypothesis focusing on the autonomic nervous system. Clinical science, 1999, 96(1): 117-125.

12. Stewart JM. Autonomic nervous system dysfunction in adolescents with postural orthostatic tachycardia syndrome and chronic fatigue syndrome is characterized by attenuated vagal baroreflex and potentiated sympathetic vasomotion. Pediatric Research, 2000, 48(2): 218-226.

13. Wessely S. Chronic fatigue: symptom and syndrome. Annals of Internal Medicine, 2001, 134(9_ Part_2): 838-843.

14. Moya A et al. Guidelines for the diagnosis and management of syncope (version 2009). European heart journal, 2009, 30(21): 2631-2671.

15. Kanjwal K, Calkins H. Syncope in children and adolescents. Cardiology clinics, 2015, 33(3): 397-409.

16. Чирейкин Л.В. и др. Чреспищеводная электрокардиография и электрокардиостимуляция. СПб.: Инкарт, 1999.

17. Васичкина Е.С. и др. Вегетативная бинодальная дисфункция у детей. Особенности естественного течения. Казанский медицинский журнал, 2015, 96(4): 609-615.

18. Shen MJ, Zipes DP. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circulation research, 2014, 114(6): 1004-1021.

19. Noda T et al. Gene-specific response of dynamic ventricular repolarization to sympathetic stimulation in LQT1, LQT2 and LQT3 forms of congenital long QT syndrome. European Heart Journal, 2002, 23(12): 975-983.

20. Antzelevitch C. Sympathetic modulation of the long QT syndrome. European heart journal, 2002, 23(16): 1246-1252.

21. DECODE Study Group et al. Prediction of the risk of cardiovascular mortality using a score that includes glucose as a risk factor. The DECODE Study. Diabetologia, 2004, 47(12): 2118-2128.

22. Coleman RL et al. Framingham, SCORE, and DECODE risk equations do not provide reliable cardiovascular risk estimates in type 2 diabetes. Diabetes care, 2007, 30(5): 1292-1293.

23. Benjamin JA, Lewis KE. Sleep-disordered breathing and cardiovascular disease. Postgraduate Medical Journal, 2008, 84(487): 15-22.

24. Hansel B, Cohen-Aubart F, Dourmap C, Giral P, Bruckert E, Girerd X. Prevalence of sleep apnea in men with metabolic syndrome and controlled hypertension. Arch. Mal. Coeur. Vaiss., 2007, 100(8): 637-641.

25. Carnethon MR, Jacobs DR Jr, Sidney S, Liu K. Influence of autonomic nervous system dysfunction on the development of type 2 diabetes: the CARDIA study. Diabetes Care, 2003, 26: 3035-3041.

26. Masuo K et al. Serum uric acid and plasma norepinephrine concentrations predict subsequent weight gain and blood pressure elevation. Hypertension, 2003, 42(4): 474-480.

27. Paolisso G et al. Plasma leptin concentrations and cardiac autonomic nervous system in healthy subjects with different body weights. The Journal of Clinical Endocrinology & Metabolism, 2000, 85(5): 1810-1814.

28. Chang CJ, Yang YC, Lu FH, Lin TS, Chen JJ, Yeh TL et al. Altered cardiac autonomic function may precede insulin resistance in metabolic syndrome. Am J Med, 2010, 123: 432-438.

29. Ziegler D et al. Selective contribution of diabetes and other cardiovascular risk factors to cardiac autonomic dysfunction in the general population. Experimental and clinical endocrinology & diabetes, 2006, 114(04): 153-159.

30. Licht CMM et al. Increased sympathetic and decreased parasympathetic activity rather than changes in hypothalamic-pituitary-adrenal axis activity is associated with metabolic abnormalities. The Journal of Clinical Endocrinology & Metabolism, 2010, 95(5): 2458-2466.

31. kumar Endukuru C, Maruthy KN, Singh SB. An evidence based study of autonomic dysfunction in children with a family history of hypertension. 2015.

32. Maver J, Štrucl M, Accetto R. Autonomic nervous system and microvascular alterations in normotensives with a family history of hypertension. Blood pressure, 2004, 13(2): 95-100.

33. El‐Sheikh M, Erath SA, Bagley EJ. Parasympathetic nervous system activity and children’s sleep. Journal of sleep research, 2013, 22(3): 282-288.

34. Tuomilehto H et al. Sleep duration is associated with an increased risk for the prevalence of type 2 diabetes in middle-aged women–The FIND2D survey. Sleep medicine, 2008, 9(3): 221-227.

35. Lampert R et al. Decreased heart rate variability is associated with higher levels of inflammation in middle-aged men. American heart journal, 2008, 156(4): 759.

36. Borovikova LV et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature, 2000, 405(6785): 458-462.

37. Reynolds EB, Seda G, Ware JC, Vinik AI, Risk MR, Fishback NF. Autonomic function in sleep apnea patients: increased heart rate variability except during REM sleep in obese patients. Sleep Breath, 2007, 11: 53-60.

38. Narkiewicz K, Somers VK. Sympathetic nerve activity in obstructive sleep apnoea. Acta physiologica Scandinavica, 2003, 177(3): 385-390.

39. Aytemir K et al. Increased myocardial vulnerability and autonomic nervous system imbalance in obstructive sleep apnea syndrome. Respiratory medicine, 2007, 101(6): 1277-1282.

40. Marin JM et al. Long-term cardiovascular outcomes in men with obstructive sleep apnoeahypopnoea with or without treatment with continuous positive airway pressure: an observational study. The Lancet, 2005, 365(9464): 1046-1053.

41. Walter LM et al. Autonomic dysfunction in children with sleep disordered breathing. Sleep and Breathing, 2013, 17(2): 605-613.

42. Mills PB et al. Nonpharmacologic management of orthostatic hypotension: a systematic review. Archives of physical medicine and rehabilitation, 2015, 96(2): 366-375.

43. Antiel RM et al. Iron insufficiency and hypovitaminosis D in adolescents with chronic fatigue and orthostatic intolerance. Southern medical journal, 2011, 104(8): 609-611.

44. Mehta R, Shangari N, O’Brien PJ. Preventing cell death induced by carbonyl stress, oxidative stress or mitochondrial toxins with vitamin B anti‐AGE agents. Molecular nutrition & food research, 2008, 52(3): 379-385.

45. Курьянова Е.В. Особенности экстракардиальной регуляции сердца белых крыс в условиях формирования дефицита симпатических нервных влияний, введения a-токоферола, физической тренировки и их сочетания: дис. Астрахань: [Астрах. гос. ун-т], 2003.

46. Спиричев В.Б., Громова О.А. Витамин D и его синергисты. Земский врач, 2012, 2.


Для цитирования:


Творогова Т.М., Захарова И.Н., Пшеничникова И.И. ВЕГЕТАТИВНАЯ ДИСФУНКЦИЯ И ЗАБОЛЕВАНИЯ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ У ДЕТЕЙ. Медицинский Совет. 2017;(19):208-212. https://doi.org/10.21518/2079-701X-2017-19-208-212

For citation:


Tvorogova T.M., Zakharova I.N., Psenichnikova I.I. AUTONOMIC DYSFUNCTION AND CARDIOVASCULAR DISEASES IN CHILDREN. Medical Council. 2017;(19):208-212. (In Russ.) https://doi.org/10.21518/2079-701X-2017-19-208-212

Просмотров: 122


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)