Preview

Медицинский Совет

Расширенный поиск

Генетически детерминированные причины гипогликемического синдрома у взрослых пациентов без сахарного диабета

https://doi.org/10.21518/2079-701X-2018-4-66-73

Полный текст:

Аннотация

Гипогликемический синдром – это симптомокомплекс, развивающийся вследствие снижения уровня глюкозы крови. В практике эндокринолога основной причиной гипогликемии у больных без сахарного диабета является инсулинпродуцирующая опухоль поджелудочной железы – инсулинома. В ткани инсулиномы происходят различные молекулярно-генетические нарушения, которые приводят к изменению секреции инсулина и его предшественников.

Нередко возникает ситуация, в которой не удается установить причину снижения уровня глюкозы крови. В таких случаях развитие гипогликемии может быть результатом различных генетически детерминированных ферментных, аутоиммунных и рецепторных нарушений, которые обусловливают изменение метаболизма глюкозы или синтеза/биоактивности инсулина. При мягком течении таких врожденных заболеваний гипогликемические состояния могут впервые проявляться во взрослом возрасте.

В представленном обзоре описаны различные генетические предикторы (мутации), играющие решающую роль в возникновении ферментных, аутоиммунных, рецепторных и пролиферативных нарушений и, как следствие, гипогликемии.

Об авторах

М. Ю. Юкина
Национальный медицинский исследовательский центр эндокринологии Минздрава России
Россия

Кандидат медицинских наук 

Москва



Н. Ф. Нуралиева
Национальный медицинский исследовательский центр эндокринологии Минздрава России
Россия
Москва


Е. А. Трошина
Национальный медицинский исследовательский центр эндокринологии Минздрава России
Россия

Член-корреспондент РАН, доктор медицинских наук, профессор

Москва



Н. С. Кузнецов
Национальный медицинский исследовательский центр эндокринологии Минздрава России
Россия

Доктор медицинских наук, профессор

Москва



Н. М. Платонова
Национальный медицинский исследовательский центр эндокринологии Минздрава России
Россия

Доктор медицинских наук 

Москва



Список литературы

1. Douillard C, Mention K, Dobbelaere D, Wemeau J-L, Saudubray J-M, Vantyghem M-C. Hypoglycaemia related to inherited metabolic diseases in adults. Orphanet J Rare Dis, 2012, 7(1): 26. doi: 10.1186/1750-1172-7-26.

2. Challis BG, Harris J, Sleigh A, Isaac I, Orme SM, Seevaratnam N, et al. Familial adult onset hyperinsulinism due to an activating glucokinase mutation: Implications for pharmacological glucokinase activation. Clin Endocrinol (Oxf), 2014, 81(6): 855-861. doi: 10.1111/cen.12517.

3. Güemes M, Hussain K. Hyperinsulinemic Hypoglycemia. Pediatr Clin North Am, 2015, 62(4): 1017-1036. doi: 10.1016/j.pcl.2015.04.010.

4. Laforet P, Weinstein DA, Smit GPA. The Glycogen Storage Diseases and Related Disorders. In: Saudubray JM, van den Berghe G, Walter JH, editors. Inborn Metab Dis Diagnosis Treat. Springer. 2012: 115-141. doi: 10.1007/978-3-642-15720-2_6.

5. Schoser B, Gläser D, Müller-Höcker J. Clinicopathological analysis of the homozygous p. W1327X AGL mutation in glycogen storage disease type 3. Am J Med Genet Part A, 2008, 146(22): 2911-2915. doi: 10.1002/ajmg.a.32529.

6. Tegtmeyer LC, Rust S, van Scherpenzeel M, Ng BG, Losfeld M-E, Timal S, et al. Multiple Phenotypes in Phosphoglucomutase 1 Deficiency. N Engl J Med, 2014, 370(6): 533-542. doi: 10.1056/NEJMoa1206605.

7. Kishnani PS, Austin SL, Arn P, Bali DS, Boney A, Case LE, et al. Glycogen storage disease type III diagnosis and management guidelines. Genet Med, 2010, 12(7): 446-463. doi: 10.1097/GIM.0b013e3181e655b6.

8. Orphanet: the portal for rare diseases and orphan drugs [Internet]. Available from: http://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=EN&Expert=319646.

9. Morava E, Galactose supplementation in phosphoglucomutase‐1 deficiency, review and outlook for a novel treatable CDG. Molecular Genetics and Metabolism, 2014, 112: 275–279.

10. Voermans NC, Preisler N, Madsen KL, Janssen MCH, Kusters B, Abu Bakar N, et al. PGM1 deficiency: Substrate use during exercise and effect of treatment with galactose. Neuromuscul Disord, 2017, 27(4): 370-376. doi: 10.1016/j.nmd.2017.01.014.

11. Feillet F, Steinmann G, Vianey-Saban C, de Chillou C, Sadoul N, Lefebvre E, et al. Adult presentation of MCAD deficiency revealed by coma and severe arrythmias. Intensive Care Med, 2003, 29: 1594-1597. doi: 10.1007/s00134-003-1871-3.

12. Matern D, Rinaldo P. Medium-Chain AcylCoenzyme A Dehydrogenase Deficiency. In: Pagon RA, Bird TD, Dolan CR, et al, eds. GeneReviews [Internet]. Seattle: University of Washington, 1993-2017. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1424/

13. Orphanet: the portal for rare diseases and orphan drugs [Internet]. Available from: http://www.orpha.net/consor/cgi-bin/OC_Exp.php?Expert=26791.

14. Grünert SC. Clinical and genetical heterogeneity of late-onset multiple acyl-coenzyme A dehydrogenase deficiency. Orphanet J Rare Dis, 2014, 9: 117. doi: 10.1186/s13023-014-0117-5.

15. Udhayabanu T, Manole A, Rajeshwari M, Varalakshmi P, Houlden H, Ashokkumar B. Riboflavin Responsive Mitochondrial Dysfunction in Neurodegenerative Diseases. J Clin Med, 2017, 6(5): 52. doi: 10.3390/jcm6050052.

16. Schiff, M., Veauville-Merllie, A., AcquavivaBourdain C. SLC25A32 mutations and riboflavin-responsive exercise intolerance. New Eng J Med, 2016, 374(1): 795-797. doi: 10.1016/j.idc.2015.10.013.

17. Izumi R, Suzuki N, Nagata M, Hasegawa T, Abe Y, Saito Y, et al. A Case of Late Onset Riboflavin-responsive Multiple Acyl-CoA Dehydrogenase Deficiency Manifesting as Recurrent Rhabdomyolysis and Acute Renal Failure. Intern Med, 2011, 50(21): 2663-2668. doi: 10.2169/internalmedicine.50.5172.

18. Olsen RKJ, Koňaříková E, Giancaspero TA, Mosegaard S, Boczonadi V, Mataković L, et al. Riboflavin-Responsive and -Non-responsive Mutations in FAD Synthase Cause Multiple AcylCoA Dehydrogenase and Combined RespiratoryChain Deficiency. Am J Hum Genet, 2016, 98(6): 1130-1145. doi: 10.1016/j.ajhg.2016.04.006.

19. Orphanet: the portal for rare diseases and orphan drugs [Internet]. Available from: http://www.orpha.net/consor/cgi-bin/OC_Exp.php?lng=EN&Expert=20.

20. Morris AAM. Disorders of Ketogenesis and Ketolysis. In: Saudubray JM, van den Berghe G, Walter JH, editors. Inborn Metab Dis Diagnosis Treat. Springer. 2012: 217-223. doi: 10.1007/978-3-642-15720-2_14.

21. Orphanet: the portal for rare diseases and orphan drugs [Internet]. Available from: http://www.orpha.net/consor/www/cgi-bin/OC_Exp.php?lng=EN&Expert=348.

22. Steinmann B, Santer R. Disorders of fructose metabolism. In: Saudubray JM, van den Berghe G, Walter JH, editors. Inborn Metab Dis Diagnosis Treat. Springer. 2012: 157-165. doi: 10.1007/978-3-642-15720-2_9.

23. Lu JR, Wang C, Shao LP. A Chinese Adult Patient with Fructose 1,6-bisphosphatase Deficiency. Chin Med J, 2017, 130: 2009-10. doi: 10.4103/0366-6999.211890.

24. Kishnani PS, Chen YT. Defects in Metabolism of Carbohydrates. In: Kliegman R, Stanton B, Geme StJ, Schor N. Nelson Textbook Of Pediatrics. 20th Edition. Elsevier. 2015: 715-737.

25. Baker P, Ayres L, Gaughan S, Weisfeld-Adams J. Hereditary Fructose Intolerance. In: Pagon RA, Bird TD, Dolan CR, et al, eds. GeneReviews [Internet]. Seattle: University of Washington, 1993-2017. Available from: https://www.ncbi. nlm.nih.gov/books/NBK333439/.

26. Sparks SE, Krasnewich DM, Congenital Disorders of N-Linked Glycosylation and Multiple Pathway Overview. In: Pagon RA, Bird TD, Dolan CR, et al, eds. GeneReviews [Internet]. Seattle: University of Washington, 1993-2017. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1332/.

27. Jain V, Chen M, Menon RK. Disorders of Carbohydrate Metabolism. In: Gleason CA, Devaskar SU, editors. Avery’s Diseases of the Newborn (Ninth Edition). Elsevier Inc, 2012: 1320-1329. doi: 10.1016/B978-1-4377-0134-0.10094-0.

28. Sparks SE, Krasnewich DM, PMM2-CDG (CDGIa). In: Pagon RA, Bird TD, Dolan CR, et al, eds. GeneReviews [Internet]. Seattle: University of Washington, 1993-2017. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1110/.

29. Otonkoski T, Kaminen N, Ustinov J, Lapatto R, Meissner T, Mayatepek E, et al. Physical exerciseinduced hyperinsulinemic hypoglycemia is an autosomal-dominant trait characterized by abnormal pyruvate-induced insulin release. Diabetes, 2003, 52(1): 199-204. doi: 10.2337/diabetes.52.1.199.

30. Otonkoski T, Jiao H, Kaminen-Ahola N, TapiaPaez I, Ullah MS, Parton LE, et al. Physical exercise-induced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic beta cells. Am J Hum Genet, 2007, 81(3): 467-474. doi: 10.1086/520960.

31. Meissner T, Otonkoski T, Feneberg R, Beinbrech B, Apostolidou S, Sipila I, et al. Exercise induced hypoglycaemic hyperinsulinism. Arch Dis Child, 2001, 84(3): 254-257. doi: 10.1136/adc.84.3.254.

32. Ismail AAA. The insulin autoimmune syndrome (IAS) as a cause of hypoglycaemia: An update on the pathophysiology, biochemical investigations and diagnosis. Clin Chem Lab Med, 2016, 54(11): 1715-1724. doi: 10.1515/cclm-2015-1255.

33. Narla RR, Hashimoto T, Kelly K, Heaney A. Hypoglycemia: A tale of three causes. J Clin Transl Endocrinol Case Reports, 2016, 2(2016): 4-6. doi: 10.1016/j.jecr.2016.04.001.

34. Cryer PE, Axelrod L, Grossman AB, Heller SR, Montori VM, Seaquist ER, et al. Evaluation and management of adult hypoglycemic disorders: An endocrine society clinical practice guideline. J Clin Endocrinol Metab, 2009, 94(3): 709728. doi: 10.1210/jc.2008-1410.

35. Uchigata Y, Hirata Y. Insulin Autoiimmune Syndrome (Hirata Disease). In: Eisenbarth, editor. Immunoendocrinology: Scientific and Clinical Aspects. Humana Press, 2011: 343-368.

36. Zhang Y, Zhao T. Hypoglycemic coma due to insulin autoimmune syndrome induced by methimazole: A rare case report. Exp Ther Med, 2014, 8(5): 1581-1584. doi: 10.3892/etm.2014.1964.

37. Masjhur JS. Insulin Autoimmune Syndrome (Hirata’s disease): severe hypoglycemic episodes in Graves’ hyperthyroidism patient treated with methimazole. Acta Med Indones, 2005, 37(4): 214-217.

38. Guerci B, Kuhn JM, Larger É, Reznik Y. Hypoglycaemia in adults: When should it be raised? How can hypoglycaemia be confirmed in non-diabetic adults? Ann Endocrinol (Paris), 2013, 74(3): 168-173. doi: 10.1016/j.ando.2013.05.002.

39. Wong SL, Priestman A, Holmes DT. Recurrent hypoglycemia from insulin autoimmune syndrome. J Gen Intern Med, 2014, 29(1): 250-254. doi: 10.1007/s11606-013-2588-9.

40. Højlund K, Hansen T, Lajer M, Henriksen JE, Levin K, Lindholm J, et al. A novel syndrome of autosomal-dominant hyperinsulinemic hypoglycemia linked to a mutation in the human insulin receptor gene. Diabetes, 2004, 53(6): 1592-1598. doi: 10.2337/diabetes.53.6.1592.

41. Preumont V, Feincoeur C, Lascols O, Courtillot C, Touraine P, Maiter D, et al. Hypoglycaemia revealing heterozygous insulin receptor mutations. Diabetes Metab, 2017, 43(1): 95-96. doi: 10.1016/j.diabet.2016.07.001.

42. Kuroda Y, Iwahashi H, Mineo I, Fukui K, Fukuhara A, Iwamoto R, et al. Hyperinsulinemic hypoglycemia syndrome associated with mutations in the human insulin receptor gene: report of two cases. Endocr J, 2015, 62(4): 353362. doi: 10.1507/endocrj.EJ14-0547.

43. McAuley G, Delaneya H, Colvillea J, Lyburn I, Worsley D, Govender P, et al. Multimodality preoperative imaging of pancreatic insulinomas. Clin Radiol, 2005, 60: 1039–1050. https //doi.org/10.1016/j.crad.2005.06.005.

44. Minnetti M, Grossman А. Somatic and germline mutations in NETs: Implications for their diagnosis and Management. Best Practice & Research Clinical Endocrinology & Metabolism. 2016, 30: 115e127. https://doi.org/10.1016/j.beem.2015.09.007

45. Chou A, Toon C, Pickett J, Gill AJ. VHL inactivation is an important pathway for the development of malignant sporadicpancreatic endocrine tumors. Endocr Relat Cancer, 2009, 16(4): 1219–27. doi: 10.1677/ERC-08-0297.

46. Johannessen LE, Panagopoulos I, Haugvik SP, Gladhaug IP, Heim S, Micci F. Upregulation of INS-IGF2 read-through expression and identification of a novel INS-IGF2 splice variant in insulinomas. Oncol Rep, 2016, 36(5): 2653-2662. doi: 10.3892/or.2016.5132.

47. Mei M, Deng D, Liu TH, Sang X-T, Lu X, Xiang H-D, et al. Clinical implications of microsatellite instability and MLH1 gene inactivation in sporadic insulinomas. J Clin Endocrinol Metab, 2009, 94(9): 3448-3457. doi: 10.1210/jc.2009-0173.

48. Gillam MP, Nimbalkar D, Sun L, Christov K, Ray D, Kaldis P, et al. MEN1-tumorigenesis in the pituitary and pancreatic islet requires Cdk4 but not Cdk2. Oncogene, 2015, 34(7): 932–938. https://doi.org/10.1038/onc.2014.3.

49. Hamze Z, Vercherat C, Bernigaud-Lacheretz A, et al. Altered MENIN expression disrupts the MAFA differentiation pathway in insulinoma. Endocr Relat Cancer, 2013, 20(6): 833–848. https://doi.org/10.1530/erc-13-0164.

50. Moore PS, Missiaglia E, Antonello D, Bazzi W, Bonnavion R, Lu J, et al. Role of disease-causing genes in sporadic pancreatic endocrine tumors: MEN 1 and VHL. Genes Chromosome Cancer, 2001, 32: 177–81.

51. Duerr EM, Chung DC. Molecular genetics of neuroendocrine tumors. Best Practice & Research Clinical Endocrinology & Metabolism, 2007, 21(1): 1–14. https://doi.org/10.1016/j.beem.2006.12.001

52. Hrašćan R, Pećina-Šlaus N, Martić TN, et al. Analysis of selected genes in neuroendocrine tumours: Insulinomas and phaeochromocytomas. J Neuroendocrinol, 2008, 20(8): 1015-1022. doi: 10.1111/j.1365-2826.2008.01755.x.

53. Dejeux Е, Olaso R, Bertrand DВ, Colic JF, GallTroselj K, Pavelic K. Hypermethylation of the IGF2 differentially methylated region 2 is a specific event in insulinomas leading to loss-of-imprinting and overexpression. Endocrine-Related Cancer, 2009, 16: 939–952. https: //doi.org/10.1677/erc-08-0331.

54. Cromer MK, Choi M, Nelson-Williams C, Fonseca AL, Kunstman JW, Korah RM, et al. Neomorphic effects of recurrent somatic mutations in Yin Yang 1 in insulin-producing adenomas. Proc Natl Acad Sci U S A, 2015, 112(13): 4062-7. https://doi.org/10.1073/pnas.1503696112.


Просмотров: 240


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)