Preview

Медицинский Совет

Расширенный поиск

Профилактика обострений хронической обструктивной болезни легких. В фокусе – двойные комбинации бронхолитиков

https://doi.org/10.21518/2079-701X-2018-15-8-17

Аннотация

Обострения ХОБЛ возникают практически у всех больных, а у половины пациентов в РФ (52%) за год обострения отмечаются два или более раза либо требуют госпитализации больного в стационар. В основе обострения ХОБЛ лежит острое усиление процессов воспаления в дыхательных путях больного под воздействием ряда факторов. Современная фармакотерапия предоставляет врачу целый ряд опций для снижения числа обострений. В настоящем обзоре представлены данные, свидетельствующие о максимальном снижении риска обострений при назначении комбинации тиотропий/олодатерол или тройной терапии.

Об авторе

В. В. Архипов
ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России
Россия

Архипов Владимир Владимирович – доктор медицинских наук, профессор кафедры клинической фармакологии и терапии.

Москва



Список литературы

1. From the Global Strategy for the Diagnosis, Management and Prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2018. Available from: https://goldcopd.org.2017.

2. Arkhipov V, Arkhipova D, Miravitlles M, Lazarev A, Stukalina E. Characteristics of COPD patients according to GOLD classification and clinical phenotypes in the Russian Federation: the SUPPORT trial. Int J Chron Obstruct Pulmon Dis, 2017, 12: 3255-3262.

3. Jones PW, Lamarca R, Chuecos F et al. Characterisation and impact of reported and unreported exacerbations: results from ATTAIN. Eur Respir J, 2014, 44: 1156-1165.

4. Halpin DMG, Decramer M, Celli BR, Mueller A, Metzdorf N, Tashkin DP. Effect of a single exacerbation on decline in lung function in COPD. Respir Med, 2017, 128: 85-91.

5. Burge S, Wedzicha JA. COPD exacerbations: definitions and classifications. Eur Respir J. Suppl, 2003, 41: 46-53.

6. Suissa S, Dell’Aniello S, Ernst P. Long-term natural history of chronic obstructive pulmonary disease: severe exacerbations and mortality. Thorax, 2012, 67: 957-963.

7. Donaldson GC, Hurst JR, Smith CJ, Hubbard RB, Wedzicha JA. Increased risk of myocardial infarction and stroke following exacerbation of COPD. Chest, 2010, 137: 1091-1097.

8. Almagro P, López García F, Cabrera FJ et al. Comorbidity and gender-related differences in patients hospitalized for COPD. The ECCO study. Respir Med, 2010, 104: 253-259.

9. Bafadhel M, McKenna S, Terry S et al. Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their biomarkers. Am J Respir Crit Care Med, 2011, 184: 662-671.

10. Mayhew D, Devos N, Lambert C et al. Longitudinal profiling of the lung microbiome in the AERIS study demonstrates repeatability of bacterial and eosinophilic COPD exacerbations. Thorax, 2018, 73: 422-430.

11. Barnes PJ, Burney PG, Silverman EK et al. Chronic obstructive pulmonary disease. Nat Rev Dis Primers. 2015, 1: 15076.

12. Miravitlles M. Exacerbations of chronic obstructive pulmonary disease: when are bacteria important. Eur Respir J. Suppl, 2002, 36: 9s-19s.

13. Hurst JR, Wedzicha JA. The biology of a chronic obstructive pulmonary disease exacerbation. Clin Chest Med, 2007, 28: 525-36.

14. Alfageme I, Vazquez R, Reyes N et al. Clinical efficacy of anti-pneumococcal vaccination in patients with COPD. Thorax, 2006, 61: 189-195.

15. Poole PJ, Chacko E, Wood-Baker RW, Cates CJ. Influenza vaccine for patients with chronic obstructive pulmonary disease. Cochrane Database Syst Rev, 2006, CD002733.

16. Maddocks M, Kon SS, Singh SJ, Man WD. Rehabilitation following hospitalization in patients with COPD: can it reduce readmissions. Respirology, 2015, 20: 395-404.

17. Criner GJ, Bourbeau J, Diekemper RL et al. Prevention of acute exacerbations of COPD: American College of Chest Physicians and Canadian Thoracic Society Guideline. Chest, 2015, 147: 894-942.

18. Beeh KM, Burgel P-R, Franssen FME et al. How Do Dual Long-Acting Bronchodilators Prevent Exacerbations of Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2017, 196: 139-149.

19. O’Donnell DE, Webb KA, Neder JA. Lung hyperinflation in COPD: applying physiology to clinical practice. COPD Research and Practice, 2015, 1.

20. Barr RG, Bluemke DA, Ahmed FS et al. Percent emphysema, airflow obstruction, and impaired left ventricular filling. N Engl J Med, 2010, 362: 217-227.

21. Parker CM, Voduc N, Aaron SD, Webb KA, O’Donnell DE. Physiological changes during symptom recovery from moderate exacerbations of COPD. Eur Respir J, 2005, 26: 420-428.

22. O’Donnell DE, Casaburi R, Frith P et al. Effects of combined tiotropium/olodaterol on inspiratory capacity and exercise endurance in COPD. European Respiratory Journal, 2017, 49: 1601348.

23. Vincken W, Aumann J, Chen H, Henley M, McBryan D, Goyal P. Efficacy and safety of coadministration of once-daily indacaterol and glycopyrronium versus indacaterol alone in COPD patients: the GLOW6 study. Int J Chron Obstruct Pulmon Dis, 2014, 9: 215-228.

24. Hoshino M, Ohtawa J, Akitsu K. Comparison of airway dimensions with once daily tiotropium plus indacaterol versus twice daily Advair(®) in chronic obstructive pulmonary disease. Pulm Pharmacol Ther, 2015, 30: 128-133.

25. Garcia CS, Prota LF, Morales MM, Romero PV, Zin WA, Rocco PR. Understanding the mechanisms of lung mechanical stress. Braz J Med Biol Res, 2006, 39: 697-706.

26. Hogg JC, Chu FS, Tan WC et al. Survival after lung volume reduction in chronic obstructive pulmonary disease: insights from small airway pathology. Am J Respir Crit Care Med, 2007, 176: 454-459.

27. Tagaya E, Yagi O, Sato A et al. Effect of tiotropium on mucus hypersecretion and airway clearance in patients with COPD. Pulm Pharmacol Ther, 2016, 39: 81-84.

28. Ghosh A, Boucher RC, Tarran R. Airway hydration and COPD. Cell Mol Life Sci, 2015, 72: 3637-3652.

29. Mackay AJ, Donaldson GC, Patel ARC, Jones PW, Hurst JR, Wedzicha JA. Usefulness of the Chronic Obstructive Pulmonary Disease Assessment Test to Evaluate Severity of COPD Exacerbations. American Journal of Respiratory and Critical Care Medicine, 2012, 185: 12181224.

30. Donaldson GC, Seemungal TA, Hurst JR, Wedzicha JA. Detrended fluctuation analysis of peak expiratory flow and exacerbation frequency in COPD. Eur Respir J, 2012, 40: 11231129.

31. Wedzicha JA, Calverley PM, Seemungal TA et al. The prevention of chronic obstructive pulmonary disease exacerbations by salmeterol/fluticasone propionate or tiotropium bromide. Am J Respir Crit Care Med, 2008, 177: 19-26.

32. Greulich T, Vogelmeier CF. Blood eosinophils as a marker of eosinophilic exacerbations in COPD. Lancet Respir Med, 2018, 6(5): e17.

33. Pascoe S, Locantore N, Dransfield MT, Barnes NC, Pavord ID. Blood eosinophil counts, exacerbations, and response to the addition of inhaled fluticasone furoate to vilanterol in patients with chronic obstructive pulmonary disease: a secondary analysis of data from two parallel randomised controlled trials. Lancet Respir Med, 2015, 3: 435-442.

34. Pavord ID, Lettis S, Locantore N et al. Blood eosinophils and inhaled corticosteroid/longacting β-2 agonist efficacy in COPD. Thorax, 2016, 71: 118-125.

35. Hoogsteden HC, Verhoeven GT, Lambrecht BN, Prins JB. Airway inflammation in asthma and chronic obstructive pulmonary disease with special emphasis on the antigen-presenting dendritic cell: influence of treatment with fluticasone propionate. Clin Exp Allergy, 1999, 29(Suppl 2): 116-124.

36. Gizycki MJ, Hattotuwa KL, Barnes N, Jeffery PK. Effects of fluticasone propionate on inflammatory cells in COPD: an ultrastructural examination of endobronchial biopsy tissue. Thorax,. 2002, 57: 799-803.

37. Hattotuwa KL, Gizycki MJ, Ansari TW, Jeffery PK, Barnes NC. The effects of inhaled fluticasone on airway inflammation in chronic obstructive pulmonary disease: a double-blind, placebocontrolled biopsy study. Am J Respir Crit Care Med, 2002, 165: 1592-1596.

38. Balbi B, Majori M, Bertacco S et al. Inhaled corticosteroids in stable COPD patients: do they have effects on cells and molecular mediators of airway inflammation. Chest, 2000, 117: 16331637.

39. Lin YH, Liao XN, Fan LL, Qu YJ, Cheng DY, Shi YH. Long-term treatment with budesonide/formoterol attenuates circulating CRP levels in chronic obstructive pulmonary disease patients of group D. PLoS One, 2017, 12: e0183300.

40. Barnes PJ, Ito K, Adcock IM. Corticosteroid resistance in chronic obstructive pulmonary disease: inactivation of histone deacetylase. Lancet, 2004, 363: 731-733.

41. Barnes PJ, Adcock IM, Ito K. Histone acetylation and deacetylation: importance in inflammatory lung diseases. Eur Respir J, 2005, 25: 552-563.

42. Matthews JG, Ito K, Barnes PJ, Adcock IM. Defective glucocorticoid receptor nuclear translocation and altered histone acetylation patterns in glucocorticoid-resistant patients. J Allergy Clin Immunol, 2004, 113: 1100-1108.

43. Eickelberg O, Roth M, Lörx R et al. Ligandindependent activation of the glucocorticoid receptor by beta2-adrenergic receptor agonists in primary human lung fibroblasts and vascular smooth muscle cells. J Biol Chem, 1999, 274: 1005-1010.

44. Daaka Y, Luttrell LM, Lefkowitz RJ. Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature, 1997, 390: 88-91.

45. Confalonieri M, Mainardi E, Della Porta R et al. Inhaled corticosteroids reduce neutrophilic bronchial inflammation in patients with chronic obstructive pulmonary disease. Thorax, 1998, 53: 583-585.

46. Yildiz F, Kaur AC, Ilgazli A et al. Inhaled corticosteroids may reduce neutrophilic inflammation in patients with stable chronic obstructive pulmonary disease. Respiration, 2000, 67: 71-76.

47. Gizycki MJ, Hattotuwa KL, Barnes N, Jeffery PK. Effects of fluticasone propionate on inflammatory cells in COPD: an ultrastructural examination of endobronchial biopsy tissue. Thorax, 2002, 57: 799-803.

48. Hattotuwa KL, Gizycki MJ, Ansari TW, Jeffery PK, Barnes NC. The effects of inhaled fluticasone on airway inflammation in chronic obstructive pulmonary disease: a double-blind, placebocontrolled biopsy study. Am J Respir Crit Care Med, 2002, 165: 1592-1596.

49. Grootendorst DC, Gauw SA, Verhoosel RM et al. Reduction in sputum neutrophil and eosinophil numbers by the PDE4 inhibitor roflumilast in patients with COPD. Thorax, 2007, 62: 1081-1087.

50. Martinez FJ, Rabe KF, Sethi S et al. Effect of Roflumilast and Inhaled Corticosteroid/Long Acting β2-Agonist on Chronic Obstructive Pulmonary Disease Exacerbations (RE(2) SPOND). A Randomized Clinical Trial. Am J Respir Crit Care Med, 2016, 194: 559-567.

51. Martinez FJ, Calverley PM, Goehring UM, Brose M, Fabbri LM, Rabe KF. Effect of roflumilast on exacerbations in patients with severe chronic obstructive pulmonary disease uncontrolled by combination therapy (REACT): a multicentre randomised controlled trial. Lancet, 2015, 385: 857-866.

52. Rennard SI, Calverley PM, Goehring UM, Bredenbröker D, Martinez FJ. Reduction of exacerbations by the PDE4 inhibitor roflumilast–the importance of defining different subsets of patients with COPD. Respir Res, 2011, 12: 18.

53. Bateman ED, Rabe KF, Calverley PM et al. Roflumilast with long-acting β2-agonists for COPD: influence of exacerbation history. Eur Respir J, 2011, 38: 553-560.

54. Wessler I, Kirkpatrick CJ. Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol, 2008, 154: 15581571.

55. Anzalone G, Gagliardo R, Bucchieri F et al. IL-17A induces chromatin remodeling promoting IL-8 release in bronchial epithelial cells: Effect of Tiotropium. Life Sci, 2016, 152: 107116.

56. Tricco AC, Strifler L, Veroniki AA et al. Comparative safety and effectiveness of longacting inhaled agents for treating chronic obstructive pulmonary disease: a systematic review and network meta-analysis. BMJ Open, 2015, 5: e009183.

57. Brodde OE, Leineweber K. Beta2-adrenoceptor gene polymorphisms. Pharmacogenet Genomics, 2005, 15: 267-275.

58. Wilchesky M, Ernst P, Brophy JM, Platt RW, Suissa S. Bronchodilator use and the risk of arrhythmia in COPD: part 1: Saskatchewan cohort study. Chest, 2012, 142: 298-304.

59. Wilchesky M, Ernst P, Brophy JM, Platt RW, Suissa S. Bronchodilator use and the risk of arrhythmia in COPD: part 2: reassessment in the larger Quebec cohort. Chest, 2012, 142: 305-311.

60. Gershon A, Croxford R, Calzavara A et al. Cardiovascular safety of inhaled long-acting bronchodilators in individuals with chronic obstructive pulmonary disease. JAMA Intern Med, 2013, 173: 1175-1185.

61. Celli B, Decramer M, Kesten S et al. Mortality in the 4-year trial of tiotropium (UPLIFT) in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2009, 180: 948-955.

62. Decramer ML, Chapman KR, Dahl R et al. Oncedaily indacaterol versus tiotropium for patients with severe chronic obstructive pulmonary disease (INVIGORATE): a randomised, blinded, parallel-group study. Lancet Respir Med, 2013, 1: 524-533.

63. Vogelmeier C, Hederer B, Glaab T et al. Tiotropium versus salmeterol for the prevention of exacerbations of COPD. N Engl J Med, 2011, 364: 1093-1103.

64. Wedzicha JA, Calverley PM, Seemungal TA, Hagan G, Ansari Z, Stockley RA. The prevention of chronic obstructive pulmonary disease exacerbations by salmeterol/fluticasone propionate or tiotropium bromide. Am J Respir Crit Care Med, 2008, 177: 19-26.

65. Casanova C, Celli BR, de-Torres JP et al. Prevalence of persistent blood eosinophilia: relation to outcomes in patients with COPD. Eur Respir J, 2017, 50.

66. Zeiger RS, Tran TN, Butler RK et al. Relationship of Blood Eosinophil Count to Exacerbations in Chronic Obstructive Pulmonary Disease. J Allergy Clin Immunol Pract, 2018, 6: 944-954.e5.

67. Suissa S, Patenaude V, Lapi F, Ernst P. Inhaled corticosteroids in COPD and the risk of serious pneumonia. Thorax, 2013, 68: 1029-1036.

68. Suissa S. Number needed to treat in COPD: exacerbations versus pneumonias. Thorax, 2013, 68: 540-543.

69. Precision Medicine Urgency: The Case of Inhaled Corticosteroids in COPD. [editorial]. Chest, 2017, 152(2): 227.

70. Suissa S, Dell’Aniello S, Ernst P. Long-Acting Bronchodilator Initiation in COPD and the Risk of Adverse Cardiopulmonary Events: A Population-Based Comparative Safety Study. Chest, 2017, 151: 60-67.

71. Vestbo J, Papi A, Corradi M et al. Single inhaler extrafine triple therapy versus long-acting muscarinic antagonist therapy for chronic obstructive pulmonary disease (TRINITY): a double-blind, parallel group, randomised controlled trial. Lancet, 2017, 389: 1919-1929.

72. Lipson DA, Barnacle H, Birk R et al. FULFIL Trial: Once-Daily Triple Therapy for Patients with Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med, 2017, 196: 438-446.

73. Calverley PMA, Magnussen H, Miravitlles M, Wedzicha JA. Triple Therapy in COPD: What We Know and What We Don’t. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2017, 14: 648-662.

74. Calzetta L, Matera MG, Cazzola M. Pharmacological mechanisms leading to synergy in fixed-dose dual bronchodilator therapy. Curr Opin Pharmacol, 2018, 40: 95-103.

75. Wedzicha JA, Banerji D, Chapman KR et al. Indacaterol-Glycopyrronium versus SalmeterolFluticasone for COPD. N Engl J Med,. 2016, 374: 2222-2234.

76. Roche N, Chapman KR, Vogelmeier CF et al. Blood Eosinophils and Response to Maintenance Chronic Obstructive Pulmonary Disease Treatment. Data from the FLAME Trial. Am J Respir Crit Care Med, 2017, 195: 1189-1197.

77. Wedzicha JA, Decramer M, Ficker JH et al. Analysis of chronic obstructive pulmonary disease exacerbations with the dual bronchodilator QVA149 compared with glycopyrronium and tiotropium (SPARK): a randomised, doubleblind, parallel-group study. Lancet Respir Med, 2013, 1: 199-209.

78. Decramer M, Anzueto A, Kerwin E et al. Efficacy and safety of umeclidinium plus vilanterol versus tiotropium, vilanterol, or umeclidinium monotherapies over 24 weeks in patients with chronic obstructive pulmonary disease: results from two multicentre, blinded, randomised controlled trials. Lancet Respir Med, 2014, 2: 472-486.

79. Bateman ED, Ferguson GT, Barnes N et al. Dual bronchodilation with QVA149 versus single bronchodilator therapy: the SHINE study. Eur Respir J, 2013, 42: 1484-1494.

80. Salmon M, Luttmann MA, Foley JJ et al. Pharmacological Characterization of GSK573719 (Umeclidinium): A Novel, Long-Acting, Inhaled Antagonist of the Muscarinic Cholinergic Receptors for Treatment of Pulmonary Diseases. Journal of Pharmacology and Experimental Therapeutics, 2013, 345: 260-270.

81. Casarosa P, Bouyssou T, Germeyer S, Schnapp A, Gantner F, Pieper M. Preclinical evaluation of long-acting muscarinic antagonists: comparison of tiotropium and investigational drugs. J Pharmacol Exp Ther, 2009, 330: 660-668.

82. Calzetta L, Rogliani P, Mattei M et al. Pharmacological characterization of the interaction between tiotropium and olodaterol administered at 5: 5 concentration-ratio in equine bronchi. COPD, 2017, 14: 526-532.

83. Pitcairn G, Reader S, Pavia D, Newman S. Deposition of corticosteroid aerosol in the human lung by Respimat Soft Mist inhaler compared to deposition by metered dose inhaler or by Turbuhaler dry powder inhaler. J Aerosol Med, 2005, 18: 264-272.

84. Ciciliani A WH, Langguth P. Comparing Respimat® Soft Mist™ Inhaler and DPI Aerosol Deposition by Combined In Vitro Measurements and CFD Simulations. Respiratory Drug Delivery, 2014, 2: 453-456.

85. Ciciliani A WH, Heussel C, Langguth P. Evaluation of Respimat® Soft Mist™ Inhaler Based on In Vitro Measurements and CFD Simulations. Respiratory Drug Delivery, 2015, 2: 367-362.

86. Calverley PMA, Anzueto AR, Carter K et al. Tiotropium and olodaterol in the prevention of chronic obstructive pulmonary disease exacerbations (DYNAGITO): a double-blind, randomised, parallel-group, active-controlled trial. Lancet Respir Med, 2018, 6: 337-344.

87. Run-in bias in randomised trials: the case of COPD medications. [editorial]. Eur Respir J 2017, 49(6)

88. Jeffery P. Anti-inflammatory effects of inhaled corticosteroids in chronic obstructive pulmonary disease: similarities and differences to asthma. Expert Opinion on Investigational Drugs, 2005, 14: 619-632.

89. Kistemaker LEM, Hiemstra PS, Bos IST et al. Tiotropium attenuates IL-13-induced goblet cell metaplasia of human airway epithelial cells. Thorax, 2015, 70: 668-676.

90. Profita M, Bonanno A, Montalbano AM et al. β2 long-acting and anticholinergic drugs control TGF-β1-mediated neutrophilic inflammation in COPD. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease, 2012, 1822: 1079-1089.

91. Vacca G, Randerath WJ, Gillissen A. Inhibition of granulocyte migration by tiotropium bromide. Respiratory Research, 2011, 12.

92. Azithromycin therapy for neutrophilic airways disease: myth or magic [editorial]. Thorax, 2009, 64(3): 186.

93. Barnes PJ. Distribution of receptor targets in the lung. Proc Am Thorac Soc, 2004, 1: 345-351.

94. Matera MG, Calzetta L, Cazzola M. Oxidation pathway and exacerbations in COPD: the role of NAC. Expert Review of Respiratory Medicine, 2016, 10: 89-97.

95. Oba Y, Sarva ST, Dias S. Efficacy and safety of long-acting β-agonist/long-acting muscarinic antagonist combinations in COPD: a network meta-analysis. Thorax, 2016, 71: 15-25.


Рецензия

Для цитирования:


Архипов В.В. Профилактика обострений хронической обструктивной болезни легких. В фокусе – двойные комбинации бронхолитиков. Медицинский Совет. 2018;(15):8-17. https://doi.org/10.21518/2079-701X-2018-15-8-17

For citation:


Arkhipov V.V. Prevention of copd exacerbations. Focus on dual bronchodilators. Meditsinskiy sovet = Medical Council. 2018;(15):8-17. (In Russ.) https://doi.org/10.21518/2079-701X-2018-15-8-17

Просмотров: 668


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)