Preview

Медицинский Совет

Расширенный поиск

Ингибиторы циклин-зависимых киназ: эффективность и безопасность

https://doi.org/10.21518/2079-701X-2019-10-42-55

Полный текст:

Аннотация

Рак молочной железы (РМЖ) – наиболее распространенное в мире онкологическое заболевание. За последнее десятилетие научные достижения и новые способы лечения РМЖ значительно улучшили прогноз. Появление ингибиторов циклин-зависимой киназы (CDK) изменило парадигму лечения метастатического гормон-рецептор-положительного HER2 негативного (ГР+HER2-) РМЖ. За последние 4 года Управлением по контролю за продуктами и лекарствами США (FDA) одобрено три низкомолекулярных ингибитора CDK4/6 – рибоциклиб, палбоциклиб и абемациклиб. Изучение этих препаратов в комбинации с эндокринотерапией в рандомизированных клинических исследованиях MONALEESA, PALOMA и MONARCH продемонстрировало впечатляющие результаты у женщин с ГР+ HER2 негативным РМЖ в пре- или постменопаузе. В российские стандарты включено два низкомолекулярных ингибитора CDK4/6 – рибоциклиб и палбоциклиб. В этом обзоре представлены данные о клинической эффективности и токсичности, возникающей при использовании ингибиторов CDK4/6 с эндокринотерапией. Несмотря на схожий спектр токсичности, ингибиторы циклин-зависимых киназ отличаются по выраженности и некоторым видам нежелательных явлений. Практически все побочные эффекты, связанные с ингибиторами CDK 4/6, предсказуемы и быстро обратимы после приостановки терапии или редукции дозы препаратов. По мнению большинства экспертов, тщательное наблюдение за пациентом на фоне терапии ингибиторами CDK 4/6 позволяет своевременно провести коррекцию лечения и тем самым снизить риск тяжелых осложнений. Такой подход применялся во всех клинических исследованиях и рекомендован ведущими экспертными комиссиями для рутинной практики.

Об авторах

И. Б. Кононенко
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр онкологии имени Н.Н. Блохина» Министерства здравоохранения Российской Федерации.
Россия

к.м.н., старший научный сотрудник отделения амбулаторной химиотерапии (дневной стационар) Федерального государственного бюджетного учреждения «Национальный медицинский исследовательский центр онкологии имени Н.Н. Блохина» Министерства здравоохранения Российской Федерации.



А. В. Снеговой
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр онкологии имени Н.Н. Блохина» Министерства здравоохранения Российской Федерации.
Россия

д.м.н., профессор, заведующий отделением амбулаторной химиотерапии (дневной стационар) Федерального государственного бюджетного учреждения «Национальный медицинский исследовательский центр онкологии имени Н.Н. Блохина» Министерства здравоохранения Российской Федерации.



В. Ю. Сельчук
Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный медико-стоматологический университет имени А.И. Евдокимова» Министерства здравоохранения Российской Федерации.
Россия

д.м.н., профессор, заведующий кафедрой онкологии Федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный медико-стоматологический университет имени А.И. Евдокимова» Министерства здравоохранения Российской Федерации.



Список литературы

1. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries CA. A Cancer Journal for Clinicians. There is no journal identification details - year, number, page.

2. Cardoso F., Spence D., Mertz S. et al. Global analysis of advanced/meta- static breast cancer: decade report (2005–2015). Breast. 2018;39:131–138.

3. Howlader N., Noone A.M., Krapcho M. et al. (eds). SEER Cancer Statistics Review, 1975– 2013. Bethesda, MD: National Cancer Institute. http:// seer.cancer.gov/csr/1975_2013/, based on November 2015 SEER data submission, posted to the SEER web site, April 2016.

4. Are the cells in the G0 phase of mitosis really suspended? Erin Cram, Grad student, Molecular and Cellular Biology, University of CA, Berkeley. 1999. MadScience Network.

5. Копнин Б.П. Мишени действия онкогенов и опухолевых супрессоров: ключ к пониманию базовых механизмов канцрогенеза. Биохимия. 2000;65(1):5-33. [Kopnin B.P. Targets of the action of oncogenes and tumour suppressors: a key to understanding the basic mechanisms of carcinogenesis. Biokhimia. 2000;65(1):5-33.] (In Russ).

6. Morgan D.O. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol. 1997;13:261-291.

7. Goodrich D.W., Wang N.P., Qian Y.W., Lee E.Y., Lee W.H. The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell. 1991 November;67(2):293-302.

8. Wu C.L., Zukerberg L.R., Ngwu C., Harlow E., Lees J.A. In vivo association of E2F and DP family proteins. Mol. Cell. Biol. 1995 May;15(5):2536-46.

9. Murphree A.L., Benedict W.F. Retinoblastoma: clues to human oncogenesis. Science. 1984 March;223(4640):1028-33.

10. De Veylder L., Joubès J., Inzé D. Plant cell cycle transitions. Current Opinion in Plant Biology. 2003 December;6(6):536-43.

11. de Jager S.M., Maughan S., Dewitte W., Scofield S., Murray J.A. The developmental context of cell-cycle control in plants. Semin. Cell Dev. Biol. 2005 June;16(3):385-96.

12. Korenjak M., Brehm A. E2F-Rb complexes regulating transcription of genes important for differentiation and development. Current Opinion in Genetics & Development. 2005 October;15(5):520-527.

13. Münger K., Howley P.M. (). Human papillomavirus immortalization and transformation functions. Virus Res. 2002 November;89(2):213-28.

14. Das S.K., Hashimoto T., Shimizu K., Yoshida T., Sakai T., Sowa Y., Komoto A., Kanazawa K. Fucoxanthin induces cell cycle arrest at G0/G1 phase in human colon carcinoma cells through up-regulation of p21WAF1/Cip1. Biochim. Biophys. Acta. 2005 November;1726(3):328-35.

15. Kushner P.J., Agard D.A., Greene G.L., Scanlan T.S., Shiau A.K., Uht R.M., Webb P. Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol. 2000 Nov 30;74(5):311-7.

16. The Cancer Genome Atlas Network, 2012.

17. Pernas S., Tolaney S.M., Winer E.P. and Goel S. CDK4/6 inhibition in breast cancer: current practice and future directions. Therapeutic Advances in Medical Oncology. 2018;10:1-15.

18. Finn R.S., Dering J., Conklin D. et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 2009;11(5):R77.

19. Finn R., Martin M., Rugo H., et al. Palbociclib and letrozole in advanced breast cancer. N Engl J Med. 2016;375:1925-1936.

20. Cristofanilli M., Turner N.C., Bondarenko I., et al. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016;17:425–439.

21. Hortobagyi G.N., Stemmer S.M., Burris H.A., Yap Y.S., Sonke G.S., Paluch-Shimon S., Campone M. et al. Updated results from MONALEESA-2, a phase III trial of first-line ribociclib plus letrozole versus placebo plus letrozole in hormone receptor-positive, HER2-negative advanced breast cancer. Ann. Oncol. 2018 Jul 1;29(7):1541-1547.

22. Tripathy D., Sohn J., Im S.-A., et al. First-line ribociclib vs. placebo with goserelin and tamoxifen or a nonsteroidal aromatase inhibitor in premenopausal women with hormonereceptor- positive, HER2- negative advanced breast cancer: results from the randomized phase III MONALEESA-7 trial. Paper presented at 2017 San Antonio Breast Cancer Symposium, 6 December. San Antonio, TX. Abstract GS2–05.

23. Sledge G.W., Jr., Toi M., Neven P., et al. MONARCH 2: abemaciclib in combination with fulvestrant in women with HR+/HER2- advanced breast cancer who had progressed while receiving endocrine therapy. J Clin Oncol. 2017;35:2875–2884.

24. Goetz M.P., Toi M., Campone M., et al. MONARCH 3: Abemaciclib as initial therapy for advanced breast cancer. J Clin Oncol. 2017;35:3638-3646.

25. Cardoso F., Senkus E., Costa A., Papadopoulos E., Aapro M., Andre F., Harbeck N., Aguilar Lopez B., Barrios C.H., Bergh J., Biganzoli L., Boers- Doets C.B., Cardoso M.J., Carey L.A., Corte´s J., Curigliano G., Dieras V. et al. Annals of Oncology. 2018;29:1634–1657.

26. Распоряжение Правительства РФ от 23 октября 2017 г. № 2323-р Об утверждении перечня жизненно необходимых и важнейших лекарственных препаратов для медицинского применения на 2018 год. [Decree of the Russian Federation Government No. 2323-r dated October 23, 2017 On the approval of the list of vital and essential drugs for 2018.] (In Russ.)

27. Tripathy D. et al. Lancet Oncol. 2018;19(7):904- 915. No article title

28. Tripathy D. et al. Presented at: 35th Annual Miami Breast cancer Conference; March 8-11, 2018; Miami FL. Abstract 626.

29. Slamon D.J., et al. J. Clin Oncol. 2018;36(24):2465-2472. No article title

30. Yardley D.A., Chan A., Nusch A., Sonke G.S., Yap Y.-S., Bachelot T., Esteva F.J., Slamon D.J. et al. Ribociclib Plus Endocrine Therapy in Patients With Hormone Receptor-positive, HER2- negative Advanced BreastCancer Presenting With Visceral Metastases: Subgroup Analysis of Phase 3 MONALEESA. San Antonio Breast Cancer Symposium, December 4-8, 2018.

31. Marc Thill and Marcus Schmidt Management of adverse events during cyclin-dependent kinase 4/6 (CDK4/6) inhibitor-based treatment in breast cancer. Ther Adv Med Oncol. 2018;10:1–12.

32. Кононенко И.Б., Снеговой А.В. и др. Протокол коррекции осложнений, возникающих при лечении ингибиторами CDK4/6. Протоколы клинических рекомендаций поддерживающей терапии в онкологии. 2018:196-205. [Kononenko I.B., Snegovoi A.V. et al. Protocol for management of complications of CDK4/6 inhibitors therapy. Protocols of clinical guidelines for maintenance therapy in oncology. 2018:196-205] (In Russ).

33. Gelbert L.M., Cai S., Lin X. et al. Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/ independent anti-tumor activities alone/in combination with gemcitabine. Invest New Drugs. 2014;32:825-837.

34. KISQUALI. Prescribing information: ribociclib. East Hanover, NJ: Novartis Pharmaceuticals Corporation, https://www.pharma.us.novartis.com/sites/www.pharma.us.novartis.com/files/kisqali.pdf (March 2017).

35. Laurenti E., Frelin C., Xie S. et al. CDK6 levels regulate quiescence exit in human hematopoietic stem cells. Cell Stem Cell. 2015;16:302-313.

36. Hu W., Sung T., Jessen B., et al. Mechanistic investigation of bone marrow suppression associated with palbociclib and its differentiation from cytotoxic chemotherapies. Clin Cancer Res. 2015;22:2000-2008.

37. Johnson S., Torrice C., Bell J., et al. Mitigation of hematologic radiation toxicitiy in mice through pharmacological quiescence induced by CDK4/6 inhibition. J Clin invest. 2010;120:2528-2536.

38. Finn R., Martin M., Rugo H. et al. Palbociclib and letrozole in advanced breast cancer. N Engl J Med. 2016;375:1925-1936RS.

39. Hortobagyi G., Stemmer S., Burris H. et al. Ribociclib as first-line therapy for HR-positive, advanced breast cancer. N Engl J Med. 2016;375:1738-1748.

40. Infante J., Cassier P., Gerecitano J. et al. A phase I study of the cyclindependent kinase 4/6 inhibitor ribociclib (LEE011) in patients with advanced solid tumors and lymphomas. Clin Cancer Res. 2016;22:5696-5705.

41. DeMichele A., Clark A.S., Tan K.S. et al. CDK4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment. Clin Cancer Res. 2015;21:995-1001.

42. Finn R.S., Crown J.P., Ettl J. et al. Efficacy and safety of palbociclib in combination with letrozole as firstline treatment of ER-positive, HER2- negative, advanced breast cancer: expanded analyses of subgroups from the randomized pivotal trial PALOMA-l/TRIO-18. Breast Cancer Res. 2016;18:67.

43. Hortobagyi G.N., Stemmer S.M., Burris H.A. et al. Updated results from MONALEESA-2, a phase III trial of first-line ribociclib + letrozole in hormone receptor-positive, HER2-negative advanced breast cancer. Annual Meeting of the American Society of Clinical Oncology, 2017. Abstr. 1038.

44. Janni W., Burris H., Blackwell K.L. et al. First-line ribociclib + letrozole in HR-positive (HR+), HER-2-negative (HER-2-), advanced breast cancer (ABC): MONALEESA-2 safety results American Society of Clinical Oncology, 2017. Abstr. 1038.

45. Vuppalanchi R., Saxena R., Maria A., et al. Pseudocirrhosis and liver failure in patients with metastatic breast cancer after treatment with palbociclib. Hepatology. 2017;65:1762–1764.

46. Sammons S.L., Topping D.L. and Blackwel K.L. CDK4/6 Inhibitors in Advanced Breast Cancer. Current Cancer Drug Targets. 2017;17(7):639.

47. Verma S., Bartlett C., Schnell P. et al. Palbociclib in combination with fulvestrant in women with hormone receptor-positive/HER2- negative advanced metastatic breast cancer: detailed safety analysis from a multicenter, randomized, placebo- controlled, phase III study (PALOMA-3). Oncologist. 2016;21:1165-1175.

48. Vidula N. and Rugo H.S. Cyclin-dependent kinase 4/6 inhibitors for the treatment of breast cancer: a review of preclinical and clinical data. Clin Breast Cancer. 2016;16:8-17.

49. Beck J.T., Neven P., Sohn J., Chan A., Sonke G.S., Bachelot T., Campos-Gomez S., Martin M., Bardia A., Alam J. et al. Ribociclib Treatment Benefit in Patients With Advanced Breast Cancer With ≥ 1 Dose Reduction: Data From the MONALEESA-2, -3, and -7 Trials. San Antonio Breast Cancer Symposium® – December 4-8, 2018.

50. Dieras V., Rugo H.S., Schnell P. et al. Long-term pooled safety analysis of palbociclib in combination with endocrine therapy for HR+/HRadvanced breast cancer [published online July 18, 2018. Natl Cancer Inst. 2018;111.

51. Samokhodskaya L.M., Lavrov A.V., Yefimenko A.Yu. et al. Features geneticists of hereditary hemochromatosis in Russian population. Med. genetika. 2007;6(1):32–36.

52. Johnson P.J., Mcfarlane I.G. Meeting report: International Autoimmune Hepatitis Group. Hepatology. 1993;18(4):998–1005.

53. Watkins P.B., Kaplowitz N., Slattery J.T. et al. Aminotransferase elevations in healthy adults receiving 4 grams of acetaminophen daily: a randomized controlled trial. JAMA. 2006;296(1):87–93.

54. Cantoni G.L. The nature of the active methyl donor formed enzymically from L-methionine and adenosine triphosphate. J Am Chem Soc. 1952;74:2942–3.

55. Снеговой А.В., Манзюк Л.В. Эффективность Гептрала® в лечении печеночной токсичности, обусловленной цитостатической химиотерапией. Фарматека. 2010;6. [Snegovoi A.V., Manzyuk L.V. Efficacy of Heptral® in the treatment of hepatic toxicity induced by cytostatic chemotherapy. Pharmateca. 2010;6.] (In Russ).

56. Goel S., DeCristo M.J., Watt A.C., Jones H.B., Sceneay J., Li B.B., Khan N., Ubellacker J.M., Xie S. et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017;548:471–475.

57. Schaer D.A., Beckmann R.P., Dempsey J.A., Huber L., Forest A., Amaladas N., Li Y., Wang Y.C., Rasmussen E.R., Chin D. et al. The CDK4/6 Inhibitor Abemaciclib Induces a T Cell Inflamed Tumor Microenvironment and Enhances the Efficacy of PD-L1 Checkpoint Blockade. Cell Reports. 2018 March 13;22(11):29782994.

58. Heng T.S. et al. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 2008;9:1091–1094.

59. Bates G.J. et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J. Clin. Oncol. 2006;24:5373–5380

60. Roulois D. et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell. 2015;162:961–973.

61. Chiappinelli K.B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell. 2015;162:974–986.

62. Obata Y. et al. The epigenetic regulator Uhrf1 facilitates the proliferation and maturation of colonic regulatory T cells. Nat. Immunol. 2014;15:571–579.

63. Chappell J., Turner K., Chiang A.Y. et al. Abemaciclib inhibits renal transporters but does not affect glomeraular filtration rate. American Society of Clinical Pharmacology and Therapeutics, Annual Meeting 2018. J Clin Pharm Ther. 2018;100(Suppl.l):abstract 672.

64. Idkaidek N., Tawfiq A., Munther M. et al. Metformin IR versus XR pharmacokinetics in humans. J Bioequiv Availab. 2011;3:233-235.

65. Krutzen E., Back S.E., Nilsson-Ehle I., et al. Plasma clearance of a new contrast agent, iohexol: a method for the assessment of glomerular filtration rate. J Lab Clin Med. 1984;104:955-961.

66. Turner N.C., Ro J., Andre F. et al. Palbociclib in hormone-receptor-positive advanced breast cancer. N Engl J Med. 2015;373:209-219.

67. Dickler M.N., Tolaney S.M., Rugo H.S. et al. MONARCH 1, a phase II study of abemaciclib, a CDK4 and CDK6 inhibitor, as a single agent, in patients with refractory HR+/HER2- metastatic breast cancer. Clin Cancer Res. 2017;23:5218-5224.

68. VERZENIO. Prescribing information: abemaciclib. Indianapolis, IN: Эли Лилли энд Компани (Eli Lilly and Company), http://pi.lilly.com/us/verzenio-uspi.pdf (сентябрь 2017).


Для цитирования:


Кононенко И.Б., Снеговой А.В., Сельчук В.Ю. Ингибиторы циклин-зависимых киназ: эффективность и безопасность. Медицинский Совет. 2019;(10):42-55. https://doi.org/10.21518/2079-701X-2019-10-42-55

For citation:


Kononenko I.B., Snegovoi A.V., Selchuk V.Y. Cyclin-dependent kinase inhibitors: efficacy and safety. Medical Council. 2019;(10):42-55. (In Russ.) https://doi.org/10.21518/2079-701X-2019-10-42-55

Просмотров: 86


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)