Male infertility: before and after the era of SARS-CoV-2
https://doi.org/10.21518/2079-701X-2020-13-179-187
Abstract
It has been found that men are infected with the coronavirus 1.5 times more often than women, but at the same time 95% of them have mild infection.
There are questions that require a scientific explanation: why are men infected more often and more susceptible than women, does the virus cross the blood-testicular barrier, can it be found in the seminal fluid, does SARS-CoV-2 have an effect on the production of androgens, is the testicle affected and what are the consequences of this damage, what is the direct effect of a virus and virus-associated problems (such as social problems, isolation, quarantine, psychological problems, sedentary lifestyle, etc.) primarily on sexual function, sexual behaviour and reproduction in general?
The review article examines the SARS-CoV-2 pandemic-associated situation in 2020 and its effect on the men’s health. The article provides data on epidemiology, aspects of pathogenesis, features of new coronavirus infection in men. The authors announced the international reproduction associations (ASRM, ESHRE, RAHR) recommendations for the implementation of assisted reproductive technology (ART) programs in the era of the pandemic. Different points of view on the effect of testosterone on the disease incidence in men are presented. The importance of sperm oxidative stress and antioxidant therapy for male infertility has been shown. The tasks of an international project for the study of SARS-CoV-2 coronavirus infection and its consequences on men’s health are outlined. An invitation to collaboration with domestic and foreign specialists in the field of urology and andrology under the aegis of the National Medical Research Center of Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation has been published.
About the Authors
R. I. OvchinnikovRussian Federation
Ruslan I. Ovchinnikov - Cand. of Sci. (Med.), Head of Clinical Affairs, Department of Andrology and Urology.
4, Oparin St., Moscow, 117997S. I. Gamidov
Russian Federation
Safail I. Gamidov - Dr. of Sci. (Med.), Head of Department of Andrology and Urology; Professor of Department of Urology and Operative Nephrology.
4, Oparin St., Moscow, 117997; 8, Bldg. 2, Trubetskaya St., Moscow, 119991
A. Yu. Popova
Russian Federation
Alina Yu. Popova - Cand. of Sci. (Med.), Senior Researcher, Department of Andrology and Urology.
4, Ostrovityanov St., Moscow, 117997S. Kh. Izhbaev
Russian Federation
Sergey Kh. Izhbaev - Cand. of Sci. (Med.), urologist, andrologist, ultrasound specialist, Department of Andrology and Urology.
4, Oparin St., Moscow, 117997
References
1. Simoni M., Hofmann M.C. The COVID-19 pandemics: ShaLL we expect androLogicaL consequences? A caLL for contributions to ANDROLOGY. Andrology. 2020;8(3):528-529. doi: 10.1111/andr.12804.
2. ILLiano E., Trama F., Costantini E. CouLd COVID-19 have an impact on maLe fertiLity? Andrology. 2020;52(6):e13654. doi: 10.1111/and.13654.
3. Zhao J. M., Zhou G. D., Yan-Ling S., Wang S.S., Yang J.F., Meng E.H. et aL. CLinicaL pathoLogy and pathogenesis of severe acute respiratory syndrome. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2003;17(3):217-221. AvaiLabLe at: https://pubmed.ncbi.nLm.nih.gov/15340561.
4. Ding Y., Zhang O., Zhongxi H., Huang Z., Che X., Hou J. et aL. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: impLications for pathogenesis and virus transmission pathways. J Pathology. 2004;203(2):622-630. doi: 10.1002/path.1560.
5. Song C., Wang Ya., Li W., Hu B., Chen G., Xia P. et aL. Absence of 2019 noveL coronavirus in semen and testes of COVID-19 patients. Biol Reprod. 2020;103(1):4-6. doi: 10.1093/bioLre/ioaa050.
6. Li D., Jin M., Bao P, Zhao W., Zhang S. CLinicaL Characteristics and ResuLts of Semen Tests Among Men With Coronavirus Disease 2019. JAMA Netw Open. 2020;3(5):е208292.2020. doi: 10.1001/jamanetworkopen.2020.8292.
7. MaLLapaty S. How sewage couLd reveaL true scaLe of coronavirus outbreak. Nature. 2020;580(7802):176-177. doi: 10.1038/d41586-020-00973-x.
8. Esteves S.C., Lombardo F., Garrido N., ALvarez J., Zini A., CoLpi G.M. et aL. SARS-CoV-2 pandemic and repercussions for maLe infertiLity patients: A proposaL for the individuaLized provision of androLogicaL services. Andrology. 2020;00:1-9. doi: 10.1111/andr.12809.
9. Xu R., CentoLa G.M., Tanrikut C. Genitourinary cancer patients have worse baseLine semen parameters than heaLthy sperm bankers. Andrology. 2019;7(4):449-453. doi: 10.1111/andr.12602.
10. AgarwaL A., Hamada A., Esteves S.C. Insight into oxidative stress in varicoceLe-associated maLe infertiLity: part 1. Nat Rev Urol. 2012;9(12):678-690. doi: 10.1038/nruroL.2012.197.
11. Esteves S.C., Miyaoka R., Roque M., AgarwaL A. Outcome of varicoceLe repair in men with nonobstructive azoospermia: systematic review and meta-anaLysis. Asian J Androl. 2016;18(2):246-253. doi 10.4103/1008-682X.169562.
12. PasquaLotto F.F., Sobreiro B.P., HaLLak J., PasquaLotto E.B., Lucon A.M. Induction of spermatogenesis in azoospermic men after varicocelectomy repair: an update. Fertil Steril. 2006;85(3):635—639. doi: 10.1016/j.fertns-tert.2005.08.043.
13. Jennings M.O., Owen R.C., Keefe D., Kim E.D. Management and counseling of the male with advanced paternal age. Fertil Steril. 2017;107(2):324-328. doi: 10.1016/j.fertnstert.2016.11.018.
14. BertonceLLi Tanaka M., AgarwaL A., Esteves S.C. Paternal age and assisted reproductive technoLogy: probLem soLver or troubLe maker? Panminerva Med. 2019;61(2):138-151. doi: 10.23736/S0031-0808.18.03512-7.
15. BeLLoc S., Hazout A., Zini A., MervieL P., Cabry R., Chahine H. et aL. How to overcome maLe infertiLity after 40: InfLuence of paternaL age on fertiLity. Maturitas. 2014;78(1):22-29. doi: 0.1016/j.maturitas.2014.02.011.
16. Zini A., ALbert O., Robaire B. Assessing sperm chromatin and DNA damage: cLinicaL importance and deveLopment of standards. Andrology. 2014;2(3):322-325. doi: 10.1111/j.2047-2927.2014.00193.x.
17. Moskovtsev S.I., MuLLen J.B., Lecker I., Jarvi K., White J., Roberts M., Lo K.C. Frequency and severity of sperm DNA damage in patients with confirmed cases of maLe infertiLity of different aetioLogies. Reprod Biomed Online. 2010;20(6):759-763. doi: 10.1016/j.rbmo.2010.03.002.
18. Drobnis E.Z., Nangia A.K. AntiviraLs and MaLe Reproduction. Adv Exp Med Biol. 2017;1034:163-178. doi: 10.1007/978-3-319-69535-8_11.
19. Vinogradov I.V., ZhivuLko A.R., KoroLev S.V. MaLe Accessory GLands Infections: Mechanisms of InfLuence on MaLe FertiLity. Vestnik urologii = Urology Herald. 2019;7(4):43-48. (In Russ.) doi: 10.21886/2308-6424-2019-7-4-43-48.
20. Zhanataev A.K., Borovskaya T.G., Shcherbakova V.S., Rudoy B.A., Vychuzhanina A.V., Grigoreva V.A. et aL. EvaLuation of the genotoxicity of the drug KagoceL. Byulleten ehksperimental’noy biologii i meditsiny = Bulletin of Experimental Biology and Medicine. 2018;166(12):690-669. (In Russ.) AvaiLabLe at: http://iramn.ru/journaLs/bbm/2018/12/1263.
21. MaLyuchenko N.V., Koshkina D.O., Korovina A.N., Gerasimova N.S., Kirpichnikov M.P, Studitsky V.M., Feofanov A.V. Effect of gossypoL on nucLe-osome structure. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya = Herald of Moscow University. Series 16. Biology. 2020;75(3):170-175. (In Russ.) AvaiLabLe at: https://vestnik-bio-msu.eLpub.ru/jour/articLe/view/901/522#.
22. ShoweLL M.G., Mackenzie-Proctor R., Brown J., Yazdani A., Stankiewicz M.T., Hart RJ. Antioxidants for maLe subfertiLity. Cochrane Database Syst Rev. 2014;(12):CD007411. doi: 10.1002/14651858.CD007411.pub3.
23. Popova A.Yu., Ovchinnikov R.I., Gamidov S.I. Antioxidant therapy improves the resuLts of НВА-test in infertiLe men during a preparation for assisted reproductive technoLogy (IVF/ICSI). Urologiia = Urology. 2019;(1):90-96. (In Russ.) doi: 10.18565/uroLogy.2019.1.90-96.
24. Bhasin S., Brito J.P., Cunningham G.R., Hayes FJ., Hodis H.N., Matsumoto A.M. et aL. Testosterone Therapy in Men With Hypogonadism: An Endocrine Society CLinicaL Practice GuideLine. J Clin Endocrinol Metab. 2018;103(5):1715-1744. doi: 10.1210/jc.2018-00229.
25. DougLas G.C., O’Bryan M.K., Hedger M.P., Lee D.K., Yarski M.A., Smith A.I., Lew R.A. The noveL angiotensin-converting enzyme (ACE) homoLog, ACE2, is seLectiveLy expressed by aduLt Leydig ceLLs of the testis. Endocrinology. 2004;145(10):4703-4711. doi: 10.1210/en.2004-0443.
26. PozziLLi P., Lenzi A. Commentary: Testosterone, a key hormone in the context of COVID-19 pandemic. Metabolism. 2020;108:154252. doi: 10.1016/j.metaboL.2020.154252.
27. Mohamad N.V., Wong S.K., Wan Hasan W.N., JoLLy JJ., Nur-Farhana M.F., Ima-Nirwana S., Chin K.Y. The reLationship between circuLating testosterone and infLammatory cytokines in men. Aging Male. 2019;22(2):129-140. doi: 10.1080/13685538.2018.1482487.
28. Chen J., Jiang O., Xia X., Liu K., Yu Z., Tao W. et aL. IndividuaL variation of the SARS-CoV-2 receptor ACE2 gene expression and reguLation. Aging Cell. 2020;19(7):e13168. doi: 10.1111/aceL.13168.
29. Heurich A., Hofmann-WinkLer H., Gierer S., LiepoLd T., Jahn O., PohLmann S. TMPRSS2 and ADAM17 cLeave ACE2 differentiaLLy and onLy proteoLysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol. 2014;88(2):1293-1307. doi: 10.1128/JVI.02202-13.
30. Stopsack K.H., Mucci L.A., Antonarakis E.S., NeLson P.S., Kantoff P.W. TMPRSS2 and COVID-19: Serendipity or Opportunity for Intervention? Cancer Discov. 2020;10(6):779-782. doi: 10.1158/2159-8290.CD-20-0451.
31. Lukassen S., Chua R.L., Trefzer T., Kahn N.C., Schneider M.A., MuLey T. et aL. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primariLy expressed in bronchiaL transient secretory ceLLs. EMBO J. 2020;39(10):e105114. doi: 10.15252/embj.20105114.
32. Hoffmann M., KLeine-Weber H., Schroeder S., Kruger N., HerrLer T., Erichsen S. et aL. SARS-CoV-2 CeLL Entry Depends on ACE2 and TMPRSS2 and Is BLocked by a CLinicaLLy Proven Protease Inhibitor. Cell. 2020;181(2):271-280.e8. doi: 10.1016/j.ceLL.2020.02.052.
33. Wambier C.G., Goren A. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is LikeLy to be androgen mediated. J Am Acad Dermatol. 2020;83(1):308-309. doi: 10.1016/j.jaad.2020.04.032.
34. MontopoLi M., ZumerLe S., Vettor R., Rugge M., Zorzi M., Catapano C.V. et aL. Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a popuLation-based study (N = 4532). Ann Oncol. 2020;31(8):1040-1045. doi: 10.1016/j.annonc.2020.04.479.
35. SaLonia A., Corona G., Giwercman A., Maggi M., Minhas S., Nappi R.E. et aL. SARS-CoV-2, testosterone and fraiLty in maLes (PROTEGGIMI): A muLtidimensionaL research project. Andrology. 2020;00:1-4. doi: 10.1111/andr.12811.
Review
For citations:
Ovchinnikov RI, Gamidov SI, Popova AY, Izhbaev SK. Male infertility: before and after the era of SARS-CoV-2. Meditsinskiy sovet = Medical Council. 2020;(13):179-187. (In Russ.) https://doi.org/10.21518/2079-701X-2020-13-179-187