Preview

Медицинский Совет

Расширенный поиск

Иммуномодулирующие эффекты пробиотиков

https://doi.org/10.21518/2079-701X-2020-15-135-144

Полный текст:

Аннотация

Сегодня происходит взрыв открытий, связанных с растущим пониманием роли сообществ микробов, ключевых видов бактерий, продуктов или метаболитов, производных от комменсалов, и, в частности, связи между некоторыми из этих компонентов и болезненными состояниями у людей. Микробиота играет фундаментальную роль в индукции, обучении и функционировании иммунной системы хозяина. В свою очередь, иммунная система в значительной степени эволюционировала как средство поддержания симбиотических отношений хозяина с этими очень разнообразными и развивающимися микробами. При оптимальной работе этот альянс иммунной системы и микробиоты позволяет индуцировать защитные реакции на патогены и поддерживать регуляторные пути, участвующие в поддержании толерантности к безвредным антигенам. В этом обзоре мы очерчиваем роль микробиоты кишечника в иммунитете, начиная с исходной информации, подтверждающей представление о последствиях дисбактериоза кишечной микробиоты в восприимчивости хозяина к инфекциям. Пробиотики считаются хорошей формой терапии для сдерживания вредных кишечных микроорганизмов, улучшения пищеварения и усвоения питательных веществ. Благоприятные эффекты пробиотиков продемонстрированы при многих заболеваниях. Один из основных механизмов действия пробиотиков – регуляция иммунного ответа хозяина. Описана уникальная роль пробиотиков в поддержании микробного гомеостаза кишечника, а также в выработке интерферона как противовирусного механизма. Кроме того, рассматривается и обсуждается регулирующая роль пробиотиков в системе «кишечник – легкие» и иммунной системе слизистых оболочек как потенциального противовирусного механизма, в т. ч. и при COVID-19. Описаны мультипробиотические продукты Бак-Сет® Форте и Бак-Сет® Колд/Флю.

Об авторах

Е. Ю. Плотникова
Кемеровский государственный медицинский университет
Россия

Плотникова Екатерина Юрьевна, доктор медицинских наук, профессор кафедры поликлинической терапии, постдипломной подготовки врачей и ВСО, руководитель курса клинической гастроэнтерологии

650022, Кемерово, ул. Ворошилова, д. 22а



Ю. В. Захарова
Кемеровский государственный медицинский университет
Россия

Захарова Юлия Валерьевна, кандидат медицинских наук, доцент кафедры микробиологии, иммунологии и вирусологии

650022, Кемерово, ул. Ворошилова, д. 22а



Список литературы

1. Sanderson I.R., Walker W.A. Uptake and transport of macromolecules by the intestine: possible role in clinical disorders (an update). Gastroenterology. 1993;104(2):622–639. doi: 10.1016/0016-5085(93)90436-g.

2. Perin N.M., Clandinin M.T., Thomson A.B.R. Importance of milk and diet on the ontogeny and adaptation of the intestine. J Pediatr Gastroenterol Nutr. 1997;24(4):419–425. doi: 10.1097/00005176-199704000-00011.

3. Grand R.J., Watkins J.B., Torti F.M. Development of the human gastrointestinal tract. Gastroenterology. 70(5 PT.1):790–810. Available at: https://pubmed.ncbi.nlm.nih.gov/770227/.

4. Bolte G., Knauss M., Metzdorf I., Stern M. Postnatal maturation of rat small intestinal brush border membranes correlates with increase in food protein binding capacity. Dig Dis Sci. 1998;43(1):148–155. doi: 10.1023/a:1018844608861.

5. Van der Heijden, Bianchi A.T.J., Dol M., Pals J.W., Stok W., Bokhout B.A. Manipulation of intestinal immune responses against ovalbumin by cholera toxin and its B subunit in mice. Immunology. 1991;72(1):89–93. Available at: https://pubmed.ncbi.nlm.nih.gov/1705237/.

6. Maynard C.L., Elson C.O., Hatton R.D., Weaver C.T. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489(7415):231–241. doi: 10.1038/nature11551.

7. Collins S.M., Surette M., Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol. 2012;10(11):735–742. doi: 10.1038/nrmicro2876.

8. Goto Y., Ivanov I.I. Intestinal epithelial cells as mediators of the commensal-host immune crosstalk. Immunol Cell Biol. 2013;91(3):204–214. doi: 10.1038/icb.2012.80.

9. Lavelle E.C., Murphy C., O’Neill L.A.J., Creagh E.M. The role of TLRs, NLRs, and RLRs in mucosal innate immunity and homeostasis. Mucosal Immunol. 2010;3(1):17–28. doi: 10.1038/mi.2009.124.

10. Cani P.D., Everard A., Duparc T. Gut microbiota, enteroendocrine functions and metabolism. Curr Opin Pharmacol. 2013;13(6):935–940. doi: 10.1016/j.coph.2013.09.008.

11. Kamada N., Seo S., Chen G., Núñez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013;13(5):321–335. doi: 10.1038/nri3430.

12. Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. doi: 10.1038/nature08821.

13. Dimitrov D.V. The human gutome: nutrigenomics of the host-microbiome interactions. OMICS. 2011;15(7–8):419–430. doi: 10.1089/omi.2010.0109.

14. Ley R.E., Peterson D.A., Gordon J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124(4):837–848. doi: 10.1016/j.cell.2006.02.017.

15. Surana N.K., Kasper D.L. Deciphering the tete-a-tete between the microbiota and the immune system. J Clin Invest. 2014;124(10):4197–4203. doi: 10.1172/JCI72332.

16. Kostic A.D., Howitt M.R., Garrett W.S. Exploring host-microbiota interactions in animal models and humans. Genes Dev. 2013;27(7):701–718. doi: 10.1101/gad.212522.112.

17. Frieri M., Stampfl H. Systemic lupus erythematosus and atherosclerosis: review of the literature. Autoimmun Rev. 2016;15(1):16–21. doi: 10.1016/j.autrev.2015.08.007.

18. Reis W.L., Yi C.X., Gao Y., Tschop M.H., Stern J.E. Brain innate immunity regulates hypothalamic arcuate neuronal activity and feeding behavior. Endocrinology. 2015;156(4):1303–1315. doi: 10.1210/en.2014-1849.

19. Johansson M.E., Sjovall H., Hansson G.C. The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol. 2013;10(6):352–361. doi: 10.1038/nrgastro.2013.35.

20. Chung H., Pamp S.J., Hill J.A., Surana N.K., Edelman S.M., Troy E.B. et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell. 2012;149(7):1578–1593. doi: 10.1016/j.cell.2012.04.037.

21. El Aidy S., Derrien M., Aardema R., Hooiveld G., Richards S.E., Dane A. et al. Transient inflammatory-like state and microbial dysbiosis are pivotal in establishment of mucosal homeostasis during colonisation of germ-free mice. Benef Microbes. 2014;5(1):67–77. doi: 10.3920/BM2013.0018.

22. Galindo-Villegas J., Garcia-Moreno D., de Oliveira S., Meseguer J., Mulero V. Regulation of immunity and disease resistance by commensal microbes and chromatin modifications during zebrafish development. Proc Natl Acad Sci U S A. 2012;109(39):E2605–E2614. doi: 10.1073/pnas.1209920109.

23. Heumann D., Barras C., Severin A., Glauser M.P., Tomasz A. Gram-positive cell walls stimulate synthesis of tumor necrosis factor alpha and interleukin-6 by human monocytes. Infect Immun. 1994;62(7):2715–2721. doi: 10.1128/IAI.62.7.2715-2721.1994.

24. Ulevitch R.J., Tobias P.S. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol. 1995;13:437–457. doi: 10.1146/annurev.iy.13.040195.002253.

25. Bested A.C., Logan A.C., Selhub E.M. Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: Part II-contemporary contextual research. Gut Pathog. 2013;5(1):3. doi: 10.1186/1757-4749-5-3.

26. Olszak T., An D., Zeissig S., Vera M.P., Richter J., Franke A. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012;336(6080):489–493. doi: 10.1126/science.1219328.

27. Cummings J.H., Pomare E.W., Branch W.J., Naylor C.P., Macfarlane G.T. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28(10):1221–1227. doi: 10.1136/gut.28.10.1221.

28. Meijer K., de Vos P., Priebe M.G. Butyrate and other short-chain fatty acids as modulators of immunity: what relevance for health? Curr Opin Clin Nutr Metab Care. 2010;13(6):715–721. doi: 10.1097/MCO.0b013e32833eebe5.

29. Arpaia N., Campbell C., Fan X., Dikiy S., van der Veeken J., de Roos P. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–455. doi: 10.1038/nature12726.

30. Smith P.M., Howitt M.R., Panikov N., Michaud M., Gallini C.A., Bohlooly Y.M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341(6145):569–573. doi: 10.1126/science.1241165.

31. Davie J.R. Review Inhibition of histone deacetylase activity by butyrate. J Nutr. 2003;133(7 Suppl):2485S–2493S. doi: 10.1093/jn/133.7.2485S.

32. Buffie C.G., Pamer E.G. Review Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol. 2013;13(11):790–801. doi: 10.1038/nri3535.

33. Kamada N., Chen G.Y., Inohara N., Núñez G. Review Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 2013;14(7):685–690. doi: 10.1038/ni.2608.

34. Ng K.M., Ferreyra J.A., Higginbottom S.K., Lynch J.B., Kashyap P.C., Gopinath S. et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature. 2013;502(7469):96–99. doi: 10.1038/nature12503.

35. Pacheco A.R., Curtis M.M., Ritchie J.M., Munera D., Waldor M.K., Moreira C.G., Sperandio V. Fucose sensing regulates bacterial intestinal colonization. Nature. Nature. 2012;492(7427):113–117. doi: 10.1038/nature11623.

36. Molloy M.J., Bouladoux N., Belkaid Y. Review Intestinal microbiota: shaping local and systemic immune responses. Semin Immunol. 2012;24(1):58–66. doi: 10.1016/j.smim.2011.11.008.

37. Hall J.A., Bouladoux N., Sun C.M., Wohlfert E.A., Blank R.B., Zhu Q. et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity. 2008;29(4):637–649. doi: 10.1016/j.immuni.2008.08.009.

38. Korpe P.S., Petri W.A. Jr. Review Environmental enteropathy: critical implications of a poorly understood condition. Trends Mol Med. 2012;18(6):328–336. doi: 10.1016/j.molmed.2012.04.007.

39. Belkaid Y., Hand T. Role of the Microbiota in Immunity and inflammation. Cell. 2014;157(1):121–141. doi: 10.1016/j.cell.2014.03.011.

40. Belkaid Y., Naik S. Compartmentalized and systemic control of tissue immunity by commensals. Nat Immunol. 2013;14(7):646–653. doi: 10.1038/ni.2604.

41. Ichinohe T., Pang I.K., Kumamoto Y., Peaper D.R., Ho J.H., Murray T.S., Iwasaki A. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci USA. 2011;108(13):5354– 5359. doi: 10.1073/pnas.1019378108.

42. Abt M.C., Osborne L.C., Monticelli L.A., Doering T.A., Alenghat T., Sonnenberg G.F. et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity. 2012;37(1):158–170. doi: 10.1016/j.immuni.2012.04.011.

43. Аhern Р.Р., Maloy K.J. Understanding immune-microbiota interactions in the intestine. Immunology. 2020;159(1):4–14. doi: 10.1111/imm.13150.

44. Fuller R. Probiotics in man and animals. J Appl Bacteriol. 1989;66:365–378. Available at: http://www.performanceprobiotics.com/Downloads/Articles/Fuller%201989%20Probiotics%20in%20man%20and%20animals.pdf.

45. Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B. et al. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11:506–514. doi: 10.1038/nrgastro.2014.66.

46. Maldonado Galdeano C., Cazorla S.I., Lemme Dumit J.M., Vélez E., Perdigón G. Beneficial Effects of Probiotic Consumption on the Immune System. Ann Nutr Metab. 2019;74(2):115–124. doi: 10.1159/000496426.

47. Famularo G., Moretti S., Marcellini S., De Simone C. Stimulation of immunity by probiotics. In: Fuller R. (ed.). Probiotics: therapeutic and other beneficial effects. Chapman and Hall, London; 1997.

48. Shah N.P. Functional cultures and health benefits. Int Dairy J. 2007;17(11):1262–1277. doi: 10.1016/j.idairyj.2007.01.014.

49. Guarner F., Malagelada J.R. Gut flora in health and disease. Lancet. 2003;361(9356):512–519. doi: 10.1016/S0140-6736(03)12489-0.

50. McNaught C.E., MacFie J. Probiotics in clinical practice: a critical review of the evidence. Nutr Res. 2001;21(1–2):343–353. doi: 10.1016/S0271-5317(00)00286-4.

51. Isolauri E., Sütas Y., Kankaanpää P., Arvilommi H., Salminen S. Probiotics: effects on immunity. Am J Clin Nutr. 2001;73(2 Suppl):444–450. doi: 10.1093/ajcn/73.2.444s.

52. Clancy R. Immunobiotics and the probiotic evolution. FEMS Immunol Med Microbiol. 2003;38(1):9–12. doi: 10.1016/S0928-8244(03)00147-0.

53. Spanhaak S., Havenaar R., Schaafsma G. The effect of consumption of milk fermented by Lactobacillus casei strain Shirota on the intestinal microflora and immune parameters in humans. Eur J Clin Nutr. 1998;52:899–907. doi: 10.1038/sj.ejcn.1600663.

54. Shida K., Makino K., Morishita A., Takamizawa K., Hachimura S., Ametani A. et al. Lactobacillus casei inhibits antigen-induced IgE secretion through regulation of cytokine production in murine splenocyte cultures. Int Arch Allergy Immunol. 1998;115(4):278–287. doi: 10.1159/000069458.

55. Yan F., Polk D.B. Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. J Biol Chem. 2002;277:50959–50965. doi: 10.1074/jbc.M207050200.

56. Ezendam J., DeKlerk A., Gremmer E.R., van Loveren H. Effects of Bifidobacterium animalis administered during lactation on allergic and autoimmune responses in rodents. Clin Exp Immunol. 2008;154(3):424–431. doi: 10.1111/j.1365-2249.2008.03788.x.

57. Hougee S., Vriesema A.J.M., Wijering S.C., Knippels L.M.J., Folkerts G., Nijkamp F.P. et al. Oral treatment with probiotics reduces allergic symptoms in ovalbumin sensitized mice: a bacterial strain comparative study. Int Arch Allergy Immunol. 2010;151(2):107–117. doi: 10.1159/000236000.

58. Gill H.S. Probiotics to enhance anti-infective defences in the gastrointestinal tract. Best Pract Res Clin Gastroenterol. 2003;17(5):755–773. doi: 10.1016/s1521-6918(03)00074-x.

59. De Vrese M., Rautenberg P., Laue C., Koopmans M., Herremans T., Schrezenmeir J. Probiotic bacteria stimulate virus-specific neutralizing antibodies following a booster polio vaccination. Eur J Nutr. 2005;44:406–413. doi: 10.1007/s00394-004-0541-8.

60. Shah N.P. Probiotics and prebiotics. Agro Food Ind Hi-Tech. 2004;15:13–16.

61. Weichselbaum E. Probiotics and health: a review of the evidence. Nutr Bull. 2009;34(4):340–373. doi: 10.1111/j.1467-3010.2009.01782.x.

62. Amit-Romach E., Uni Z., Reifen R. Multistep mechanism of probiotic bacterium, the effect on innate immune system. Mol Nutr Food Res. 2010;54(2):277–284. doi: 10.1002/mnfr.200800591.

63. Amit-Romach E., Uni Z., Reifen R. Therapeutic potential of two probiotics in inflammatory bowel disease as observed in the trinitrobenzene sulfonic acid model of colitis. Dis Colon Rectum. 2008;51:1828–1836. doi: 10.1007/s10350-008-9394-1.

64. Commane D., Hughes R., Shortt C., Rowland I. The potential mechanisms involved in the anti-carcinogenic action of probiotics. Mutat Res. 2005;591(1–2):276–289. doi: 10.1016/j.mrfmmm.2005.02.027.

65. Cukrowska B., Bierła J.B., Zakrzewska M., Klukowski M., Maciorkowska E. The Relationship between the Infant Gut Microbiota and Allergy. The Role of Bifidobacterium breve and Prebiotic Oligosaccharides in the Activation of Anti-Allergic Mechanisms in Early Life. Nutrients. 2020;12(4):946. doi: 10.3390/nu12040946.

66. Roessler A., Friedrich U., Vogelsang H., Bauer A., Kaatz M., Hipler U.C. et al. The immune system in healthy adults and patients with atopic dermatitis seems to be affected differently by a probiotic intervention. Clin Exp Allergy. 2008;38(1):93–102. doi: 10.1111/j.1365-2222.2007.02876.x.

67. Wickens K., Black P.N., Stanley T.V., Mitchell E., Fitzharris P., Tannock G.W. et al. A differential effect of 2 probiotics in the prevention of eczema and atopy: a double-blind, randomized, placebo controlled trial. J Allergy Clin Immunol. 2008;122(4):788–794. doi: 10.1016/j.jaci.2008.07.011.

68. Gabryszewski S.J., Bachar O., Dyer K.D., Percopo C.M., Killoran K.E., Domachowske J.B., Rosenberg H.F. Lactobacillus-mediated priming of the respiratory mucosa protects against lethal pneumovirus infection. J Immunol. 2011;186(2):1151–1161. doi: 10.4049/jimmunol.1001751.

69. Berggren A., Lazou Ahren I., Larsson N., Onning G. Randomised, doubleblind and placebo controlled study using new probiotic lactobacilli for strengthening the body immune defence against viral infections. Eur J Nutr. 2011;50:203–210. doi: 10.1007/s00394-010-0127-6.

70. Moeini H., Rahim R.A., Omar A.R., Shafee N., Yusoff K. Lactobacillus acidophilus as a live vehicle for oral immunization against chicken anemia virus. Appl Microbiol Biotechnol. 2011;90:77–88. doi: 10.1007/s00253-010-3050-0.

71. Nader De Macias M.E., Apella M.C., Romero N.C., Gonzalez S.N., Oliver G. Inhibition of Shigella sonnei by Lactobacillus casei and Lactobacillus acidophilus. J Appl Bacteriol. 1992;73(5):407–411. doi: 10.1111/j.1365-2672.1992.tb04996.x.

72. Tejada-Simon M.V., Lee J.H., Ustunol Z., Pestka J.J. Ingestion of yogurt containing Lactobacillus acidophilus and Bifidobacterium to potentiate immunoglobulin a responses to cholera toxin in mice. J Dairy Sci. 1999;82:649–660. doi: 10.3168/jds.S0022-0302(99)75281-1.

73. Lakshmi B., Viswanath B., Sai Gopal D.V.R. Probiotics as antiviral agents in shrimp aquaculture. J Pathogens. 2013;2013:1–13. doi: 10.1155/2013/424123.

74. Al Kassaa I., Hober D., Hamze M., Chihib N.E., Drider D. Antiviral potential of lactic acid bacteria and their bacteriocins. Probiot Antimicrob Proteins. 2014;6:177–185. doi: 10.1007/s12602-014-9162-6.

75. Yang Y., Song H., Wang L., Dong W., Yang Z., Yuan P. et al. Antiviral effects of a probiotic metabolic products against transmissible gastroenteritis coronavirus. J Prob Health. 2017;5:3. doi: 10.4172/2329-8901.1000184.

76. Callahan L.N., Phelan M., Mallinson M., Norcross M.A. Dextran sulfate blocks antibody binding to the principal neutralizing domain of human immunodeficiency virus type 1 without interfering with gp120-CD4 interactions. J Virol. 1991;65(3):1543–1550. doi: 10.1128/JVI.65.3.1543-1550.1991.

77. Wang X., Hu W., Zhu L., Biosci Y.Q. Bacillus subtilis and surfactin inhibit the transmissible gastroenteritis virus from entering the intestinal epithelial cells. Biosci Rep. 2017;37(2):BSR20170082. doi: 10.1042/BSR20170082.

78. Kokubo T., Komano Y., Tsuji R., Fujiwara D., Fujii T., Kanauchi O. The effects of plasmacytoid dendritic cell-stimulative lactic acid bacteria, Lactococcus lactis strain plasma, on exercise-induced fatigue and recovery via immunomodulatory action. Int J Sport Nutr Exerc Metab. 2019;29(4):354–358. doi: 10.1123/ijsnem.2018-0377

79. Song J.A., Kim H.J., Hong S.K., Lee D.H., Lee S.W., Song C.S. et al. Oral intake of Lactobacillus rhamnosus M21 enhances the survival rate of mice lethally infected with influenza virus. J Microbiol Immunol Infect. 2016;49(1):16–23. doi: 10.1016/j.jmii.2014.07.011.

80. Zelaya H., Alvarez S., Kitazawa H., Villena J. Respiratory antiviral immunity and immunobiotics: beneficial effects on inflammation-coagulation interaction during influenza virus infection. Front Immunol. 2016;7:633. doi: 10.3389/fimmu.2016.00633.

81. Dermyshi E., Wang Y., Yan C., Hong W., Qiu G., Gong X. et al. The “golden age” of probiotics: a systematic review and meta-analysis of randomized and observational studies in preterm infants. Neonatology. 2017;112:9–23. doi: 10.1159/000454668.

82. Hao Qi., Dong B.R., Wu T. Probiotics for preventing acute upper respiratory tract infections. Cochrane Database Syst Rev. 2015;(2):CD006895. doi: 10.1002/14651858.CD006895.pub3.

83. Panigrahi P., Parida S., Nanda N.C., Satpathy R., Pradhan L., Chandel D.S. et al. A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature. 2017;548:407–412. doi: 10.1038/nature23480.

84. Luoto R., Ruuskanen O., Waris M., Kalliomaki M., Salminen S., Isolauri E. Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: a randomized, placebo-controlled trial. J Allergy Clin Immunol. 2014;133(2):405–413. doi: 10.1016/j.jaci.2013.08.020.

85. Waki N., Matsumoto M., Fukui Y., Suganuma H. Effects of probiotic Lactobacillus brevis KB290 on incidence of influenza infection among schoolchildren: an open-label pilot study. Lett Appl Microbiol. 2014;59(6):565–571. doi: 10.1111/lam.12340.

86. Namba K., Hatano M., Yaeshima T., Takase M., Suzuki K. Effects of Bifidobacterium longum BB536 administration on influenza infection, influenza vaccine antibody titer, and cell-mediated immunity in the elderly. Biosci Biotechnol Biochem. 2010;74(5):939–945. doi: 10.1271/bbb.90749.

87. Rautava S., Salminen S., Isolauri E. Specific probiotics in reducing the risk of acute infections in infancy–a randomised, double-blind, placebo-controlled study. Br J Nutr. 2009;101(11):1722–1726. doi: 10.1017/S0007114508116282.

88. Cárdenas N., Martín V., Arroyo R., López M., Carrera M., Badiola C. et al. Prevention of recurrent acute otitis media in children through the use of Lactobacillus salivarius PS7, a target-specific probiotic strain. Nutrients. 2019;11(2):376. doi: 10.3390/nu11020376.

89. Zhang H., Yeh C., Jin Z., Ding L., Liu B.Y., Zhang L., Dannellye H.K. Prospective study of probiotic supplementation results in immune stimulation and improvement of upper respiratory infection rate. Synth Syst Biotechnol. 2018;3(2):113–120. doi: 10.1016/j.synbio.2018.03.001.

90. Lenoir-Wijnkoop I., Merenstein D., Korchagina D., Broholm C., Sanders M.E., Tancredi D. Probiotics Reduce Health Care Cost and Societal Impact of Flu-Like Respiratory Tract Infections in the USA: An Economic Modeling Study. Front Pharmacol. 2019;10:980. doi: 10.3389/fphar.2019.00980.

91. de Vrese M., Winkler P., Rautenberg P., Harder T., Noah C., Laue C. et al. Effect of Lactobacillus gasseri PA 16/8, Bifidobacterium longum SP 07/3, B. bifidum MF 20/5 on common cold episodes: a double blind, randomized, controlled trial. Clin Nutr. 2005;24(4):481–491. doi: 10.1016/j.clnu.2005.02.006.

92. Baud D., Agri V.D., Gibson G.R., Reid G., Giannoni E. Using probiotics to flatten the curve of coronavirus disease COVID-2019 pandemic. Front Public Health. 2020;8:186. doi: 10.3389/fpubh.2020.00186.

93. Xu Y., Li X., Zhu B., Liang H., Fang C., Gong Y. et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat Med. 2020;26:502–505. doi: 10.1038/s41591-020-0817-4.

94. Gu S., Chen Y., Wu Z., Chen Y., Gao H., Lv L. еt al. Alterations of the Gut Microbiota in Patients With Coronavirus Disease 2019 or H1N1 Influenza. Clin Infect Dis. 2020;ciaa709. doi: 10.1093/cid/ciaa709.

95. Sundararaman A., Ray M., Ravindra P.V., Halami P.M. Role of probiotics to combat viral infections with emphasis on COVID-19. Appl Microbiol Biotechnol. 2020;104(19):8089–8104. doi: 10.1007/s00253-020-10832-4.

96. Villapol S. Gastrointestinal symptoms associated with COVID-19: impact on the gut microbiome. Transl Res. 2020;S1931-5244(20)30199-7. doi: 10.1016/j.trsl.2020.08.004.

97. Shinde T., Hansbro P.M., Sohal S.S., Dingle P., Eri R., Stanley R. Microbiota Modulating Nutritional Approaches to Countering the Effects of Viral Respiratory Infections Including SARS-CoV-2 through Promoting Metabolic and Immune Fitness with Probiotics and Plant Bioactives. Microorganisms. 2020;8(6):921. doi: 10.3390/microorganisms8060921.

98. Morais H.A., Passos T.S., Maciel B.L.L., da Silva-Maia J.K. Ana settings Open AccessReview Can Probiotics and Diet Promote Beneficial Immune Modulation and Purine Control in Coronavirus Infection? Nutrients. 2020;12(6):1737. doi: 10.3390/nu12061737.

99. Mak J.W.Y., Chan F.K.L., Ng S.C. Probiotics and COVID-19: one size does not fit all. Lancet Gastroenterol Hepatol. 2020;5(7):644–645. doi: 10.1016/S2468-1253(20)30122-9.

100. Aguila E.J.T., Lontok M.A.D.C., Aguila E.J.T. Letter: role of probiotics in the COVID-19 pandemic. Aliment Pharmacol Ther. 2020;52(5):931–932. doi: 10.1111/apt.15898.

101. Anwar F., Altayb H.N., Al-Abbasi F.A., Al-Malki A.L., Kamal M.A., Kumar V. Antiviral effects of probiotic metabolites on COVID-19. J Biomol Struct Dyn. 2020;1–10. doi: 10.1080/07391102.2020.1775123.

102. Antunes A.E.C., Vinderola G., Xavier-Santos D., Sivieri K. Potential contribution of beneficial microbes to face the COVID-19 pandemic. Food Res Int. 2020;136:109577. doi: 10.1016/j.foodres.2020.109577.

103. Giannoni E., Baud D., Agri V.D., Gibson G.R., Reid G. Probiotics and COVID19. Lancet Gastroenterol Hepatol. 2020;5(8):720–721. doi: 10.1016/S2468-1253(20)30195-3.

104. Mak J.W.Y., Chan F.K.L., Ng S.C. Probiotics and COVID-19 – Authors’ reply. Lancet Gastroenterol Hepatol. 2020;5(8):722–723. doi: 10.1016/S2468-1253(20)30197-7.

105. Ceccarelli G., Scagnolari C., Pugliese F., Mastroianni C.M., d’Ettorre G. Probiotics and COVID-19. Lancet Gastroenterol Hepatol. 2020;5(8):721– 722. doi: 10.1016/s2468-1253(20)30196-5.

106. Горелов А.В., Каннер Е.В., Мелехина Е.В., Сидельникова Э.С. Совершенствование превентивной микробиомсберегающей терапии при применении антибиотиков у детей с острыми респираторными инфекциями. Вопросы практической педиатрии. 2020;15(2):41–50. doi: 10.20953/1817-7646-2020-2-41-50.

107. Горелов А.В., Мелехина Е.В., Сидельникова Э.С. Разработка патогенетически обоснованных подходов к терапии детей раннего возраста, больных острыми респираторными инфекциями, требующих назначения антибактериальных препаратов. Медицинский совет. 2019;(17):208–216. doi: 10.21518/2079-701X-2019-17-208-216.

108. Горелов А.В., Мелехина Е.В, Сидельникова Э.С. Профилактика нарушений биоценоза у детей с острыми респираторными инфекциями, получающих антибактериальную терапию. РМЖ. 2019;27(10):26–31. Режим доступа: https://www.rmj.ru/articles/infektsionnye_bolezni/Profilaktika_narusheniy_biocenoza_u_detey_s_ostrymi_respiratornymi_infekciyami_ poluchayuschih_antibakterialynuyu_terapiyu/.


Для цитирования:


Плотникова Е.Ю., Захарова Ю.В. Иммуномодулирующие эффекты пробиотиков. Медицинский Совет. 2020;(15):135-144. https://doi.org/10.21518/2079-701X-2020-15-135-144

For citation:


Plotnikova E.Yu., Zakharova Yu.V. Immunomodulatory effects of probiotics. Meditsinskiy sovet = Medical Council. 2020;(15):135-144. (In Russ.) https://doi.org/10.21518/2079-701X-2020-15-135-144

Просмотров: 353


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)