Preview

Медицинский Совет

Расширенный поиск

Роль Т-регуляторных клеток в аутоиммунном тиреоидите

https://doi.org/10.21518/2079-701X-2020-21-152-159

Полный текст:

Аннотация

Аутоиммунный тиреоидит (АИТ) является органоспецифическим аутоиммунным заболеванием, обусловленным активацией CD4+-аутореактивных Т-клеток. Т-регуляторные клетки (Treg) – популяция Т-клеток, которые играют центральную роль в иммунологической толерантности путем супрессии аутореактивных клеток. CD4+-Тreg делятся на тимические (tTreg) и периферические (pTreg). tTreg осуществляют свои функции путем цитокин-независимых механизмов, pTreg – за счет IL-10, TGF-β и IL-35. Тreg выполняют защитную функцию по отношению к АИТ. Исследования уровня Treg при АИТ показывают различные результаты, в большинстве случаев уровень Treg повышен, при этом нарушена их функция. На функцию Treg при АИТ оказывает влияние множество факторов, например уровень тиреоглобулина, витамина D и др. Кроме уровня непосредственно Treg, при АИТ большое значение имеет соотношение Th17/Treg. Активация Treg и изменение соотношения Th17/Treg могут быть использованы при лечении АИТ.

Об авторах

С. И. Жукова
Московский государственный университет им. М.В. Ломоносова
Россия

студент 3-го курса факультета фундаментальной медицины, 

119991, Россия, Москва, Ленинские горы, д. 1



И. Д. Каннер
Московский государственный университет им. М.В. Ломоносова
Россия

студент 3-го курса факультета фундаментальной медицины,

119991, Россия, Москва, Ленинские горы, д. 1



Т. М. Мамонтова
Московский государственный университет им. М.В. Ломоносова
Россия

студент 3-го курса факультета фундаментальной медицины,

119991, Россия, Москва, Ленинские горы, д. 1



Е. М. Шеломенцева
Московский государственный университет им. М.В. Ломоносова
Россия

студент 3-го курса факультета фундаментальной медицины,

119991, Россия, Москва, Ленинские горы, д. 1



М. Л. Максимов
Казанская государственная медицинская академия
Россия

д.м.н., профессор, заведующий кафедрой клинической фармакологии и фармакотерапии, 

420012, Россия, Казань, ул. Бутлерова, д. 36



Список литературы

1. Sinha A.A., Lopez M.T., McDevitt H.O. Autoimmune diseases: the failure of self tolerance. Science. 1990;248(4961):1380–1388. doi: 10.1126/science.1972595.

2. Hartley S.B., Cooke M.P., Fulcher D.A., Harris A.W., Cory S., Basten A. et al. Elimination of self-reactive B lymphocytes proceeds in two stages: arrested development and cell death. Cell. 1993;72(3):325–335. doi: 10.1016/0092-8674(93)90111-3.

3. Zerrahn J., Held W., Raulet D. The MHC reactivity of the T cell repertoire prior to positive and negative selection. Cell. 1997;88(5):627–636. doi: 10.1016/S0092-8674(00)81905-4.

4. Sakaguchi S., Sakaguchi N., Asano M., Itoh M., Toda M. Immunologic selftolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunology. 1995;155(3):1151–1164. Available at: https://pubmed.ncbi.nlm.nih.gov/7636184.

5. Groux H., Bigler M., de Vries J., Roncarolo M. Interleukin-10 induces a longterm antigen-specific anergic state in human CD4+ T cells. J Exp Med. 1996;184(1):19–29. doi: 10.1084/jem.184.1.19.

6. Delemer B., Aubert J.P., Nys P., Landron F., Bouee S. An observational study of the initial management of hypothyroidism in France: the ORCHIDEE study. Eur J Endocrinol. 2012;167(6):817–823. doi: 10.1530/EJE-11-1041.

7. Vitales-Noyola M., Serrano-Somavilla A., Martínez-Hernández R., Sampedro-Nuñez M., Ramos-Levi A., González-Amaro R., Marazuela M. Patients With Autoimmune Thyroiditis Show Diminished Levels and Defective Suppressive Function of Tr1 Regulatory Lymphocytes. J Clin Endocrinol Metab. 2018;103(9):3359–3367. doi: 10.1210/jc.2018-00498.

8. Ergür A.T., Evliyaoğlu O., Şıklar Z., Bilir P., Öcal G., Berberoğlu M. Evaluation of thyroid functions with respect to iodine status and TRH test in chronic autoimmune thyroiditis. J Clin Res Pediatr Endocrinol. 2011;3(1):18–21. doi: 10.4274/jcrpe.v3i1.04.

9. Şıklar Z., Karataş D., Doğu F., Hacıhamdioğlu B., İkincioğulları A., Berberoğlu M. Regulatory T Cells and Vitamin D Status in Children with Chronic Autoimmune Thyroiditis. J Clin Res Pediatr Endocrinol. 2016;8(3):276– 281. doi: 10.4274/jcrpe.2766.

10. ElRehewy M., Kong Y.M., Giraldo A.A., Rose N.R. Syngeneic thyroglobulin is immunogenic in good responder mice. Eur J Immunol. 1981;11(2):146–151. doi: 10.1002/eji.1830110216.

11. Kekubo K., Kishihara M., Sanders J., Jutton J., Schneider A.B. Differences between circulating and tissue thyroglobulin in rats. Endocrinology. 1981;109(2):427–432. doi: 10.1210/endo-109-2-427.

12. Glick A.B., Wodzinski A., Fu P., Levine A.D., Wald D.N. Impairment of regulatory T-cell function in autoimmune thyroid disease. Thyroid. 2013;23(7):871–878. doi: 10.1089/thy.2012.0514.

13. Rodríguez-Valiente A., Álvarez-Montero Ó., Gorriz-Gil C., García-Berrocal J.R. l-Thyroxine does not prevent immunemediated sensorineural hearing loss in autoimmune thyroid diseases. Acta Otorrinolaringol Esp. 2019;70(4):229–234. (In Spanish) doi: 10.1016/j.otorri.2018.06.001.

14. Gangi E., Vasu C., Cheatem D., Prabhakar B.S. IL-10-producing CD4+CD25+regulatory T cells play a critical role in granulocyte-macrophage colony-stimulating factor-induced suppression of experimental autoimmune thyroiditis. J Immunol. 2005;174(11):7006–7013. doi: 10.4049/jimmunol.174.11.7006.

15. Bossowski A., Borysewicz-Sańczyk H., Wawrusiewicz-Kurylonek N., Zasim A., Szalecki M., Wikiera B. et al. Analysis of chosen polymorphisms in FoxP3 gene in children and adolescents with autoimmune thyroid diseases. Autoimmunity. 2014;47(6):395–400. doi: 10.3109/08916934.2014.910767.

16. Abbas A.K., Benoist C., Bluestone J.A., Campbell D.J., Ghosh S., Hori S. et al. Regulatory T cells: Recommendations to simplify the nomenclature. Nat Immunol. 2013;14(4):307–308. doi: 10.1038/ni.2554.

17. Zheng S.G., Wang J.H., Gray J.D., Soucier H., Horwitz D.A. Natural and induced CD4+CD25+ cells educate CD4+CD25- cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J Immunol. 2004;172(9):5213–5221. doi: 10.4049/jimmunol.172.9.5213.

18. Xing Y., Hogquist K.A. T-cell tolerance: central and peripheral. Cold Spring Harb Perspect Biol. 2012;4(6):a00695. doi: 10.1101/cshperspect.a006957.

19. Thornton A.M., Donovan E.E., Piccirillo C.A., Shevach E.M. Cutting Edge: IL-2 Is Critically Required for the In Vitro Activation of CD4+CD25+ T Cell Suppressor Function. J Immunol. 2004;172(11):6519–6523. doi: 10.4049/jimmunol.172.11.6519.

20. Groux H., O’Garra A., Bigler M., Rouleau M., Antonenko S., de Vries J.E., Roncarlo M.G. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature. 1997;389(6652):737–742. doi: 10.1038/39614.

21. Cottrez F., Groux H. Specialization in tolerance: innate CD(4+)CD(25+) versus acquired TR1 and TH3 regulatory T cells. Transplantation. 2004;77(1S):12–15. doi: 10.1097/01.TP.0000106471.23410.32.

22. Levings M.K., Gregori S., Tresoldi E., Cazzaniga S., Bonini C., Roncarolo M.G. Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25+CD4+ Tr cells. Blood. 2005;105(3):1162–1169. doi: 10.1182/blood-2004-03-1211.

23. Kemper C., Chan A.C., Green J.M., Brett K.A., Murphy K.M., Atkinson J.P. Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature. 2003;421(6921):388–392. doi: 10.1038/nature01315.

24. Liu Y., Yuan X., Li X., Cui D., Xie J. Constitutive Changes in Circulating Follicular Helper T Cells and Their Subsets in Patients with Graves’ Disease. J Immunol Res. 2018;2018:8972572. doi: 10.1155/2018/8972572.

25. Zha B., Huang X., Lin J., Liu J., Hou Y., Wu G. Distribution of lymphocyte subpopulations in thyroid glands of human autoimmune thyroid disease. J Clin Lab Anal. 2014;28(3):249–254. doi: 10.1002/jcla.21674.

26. Nakamura K., Kitani A., Strober W. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surfacebound transforming growth factor-β. J Exp Med. 2001;194(5):629–644. doi: 10.1084/jem.194.5.629.

27. Fontenot J.D., Rasmussen J.P., Gavin M.A., Rudensky A.Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol. 2005;6(11):1142–1151. doi: 10.1038/ni1263.

28. Jafarzadeh A., Jamali M., Mahdavi R., Ebrahimi H.A., Hajghani H.A., Khosravimashizi A. et al. Circulating levels of interleukin-35 in patients with multiple sclerosis: evaluation of the influences of FOXP3 gene polymorphism and treatment program. J Mol Neurosci. 2015;55(4):891–897. doi: 10.1007/s12031-014-0443-z.

29. Uhlig H.H., Coombes J., Mottet C., Izcue A., Thompson C., Fanger A. et al. Characterization of Foxp3+CD4+CD25+ and IL-10-secreting CD4+CD25+ T cells during cure of colitis. J Immunol. 2006;177(9):5852–5860. doi: 10.4049/jimmunol.177.9.5852.

30. Chen W., Jin W., Hardegen N., Lei K.J., Li L., Marinos N. et al. Conversion of peripheral CD4+CD25− naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J Exp Med. 2003;198(12):1875–1886. doi: 10.1084/jem.20030152.

31. Fantini M.С., Becker C., Monteleone G., Pallone F., Galle P.К., Neurath M.А. Cutting edge: TGF-β induces a regulatory phenotype in CD4+CD25− T cells through Foxp3 induction and down-regulation of Smad7. J Immunol. 2004;172(9):5149–5153. doi: 10.4049/jimmunol.172.9.5149.

32. Fu S., Zhang N., Yopp A.С., Chen D., Mao M., Chen D. et al. TGF-β induces Foxp3 + T-regulatory cells from CD4 + CD25 − precursors. Am J Transplant. 2004;4(10):1614–1627. doi: 10.1111/j.1600-6143.2004.00566.x.

33. Zhang J., Ren M., Zeng H., Guo Y., Zhuang Z., Feng Z. et al. Elevated follicular helper T cells and expression of IL-21 in thyroid tissues are involved in the pathogenesis of Graves’ disease. Immunol Res. 2015;62(2):163–174. doi: 10.1007/s12026-015-8647-z.

34. Xie M.M., Liu H., Corn C., Koh B.H., Kaplan M.H., Turner M.J., Dent A.L. Roles of T follicular helper cells and T follicular regulatory cells in Autoantibody Production in IL-2-deficient mice. Immunohorizons. 2019;3(7):306–316. doi: 10.4049/immunohorizons.1900034.

35. Sage P.N., Paterson A.M., Lovitch S.B., Sharpe A.H. The coinhibitory receptor CTLA-4 controls B cell responses by modulating T follicular helper, T follicular regulatory, and T regulatory cells. Immunity. 2014;41(6):1026–1039. doi: 10.1016/j.immuni.2014.12.005.

36. Wu H., Chen Y., Liu H., Xu L.L., Teuscher P., Wang S. et al. Follicular regulatory T cells repress cytokine production by follicular helper T cells and optimize IgG responses in mice. Eur J Immunol. 2016;46(5):1152–1161. doi: 10.1002/eji.201546094.

37. Vahl J.C., Drees C., Heger K., Heink S., Fischer J.C., Nedjic J. et al. Continuous T cell receptor signals maintain a functional regulatory T cell pool. Immunity. 2014;41(5):722–736. doi: 10.1016/j.immuni.2014.10.012.

38. Horie I., Abiru N., Sakamoto H., Iwakura Y., Nagayama Y. Induction of autoimmune thyroiditis by depletion of CD4+CD25+ regulatory T cells in thyroiditis-resistant IL-17, but not interferon-gamma receptor, knockout nonobese diabetic-H2h4 mice. Endocrinology. 2011;152(11):4448–4454. doi: 10.1210/en.2011-1356.

39. Safdari V., Alijani E., Nemati M., Jafarzadeh A. Imbalances in T Cell-Related Transcription Factors Among Patients with Hashimoto’s Thyroiditis. Sultan Qaboos Univ Med J. 2017;17(2):e174–e180. doi: 10.18295/squmj.2016.17.02.007.

40. Li Y., Wang Y., Liu Y., Wang Y., Zuo X., Li Y., Lu X. The possible role of the novel cytokines il-35 and il-37 in inflammatory bowel disease. Mediators Inflamm. 2014;2014:136329. doi: 10.1155/2014/136329.

41. Tokic S., Stefanic M., Glavas-Obrovac L., Jaman S., Novosadova E., Petrkova J. et al. The Expression of T Cell FOXP3 and T-Bet Is Upregulated in Severe but Not Euthyroid Hashimoto’s Thyroiditis. Mediators Inflamm. 2016;2016:3687420. doi: 10.1155/2016/3687420.

42. Pan D., Shin Y.H., Gopalakrishnan G., Hennessey J., De Groot L.J. Regulatory T cells in Graves’ disease. Clin Endocrinol (Oxf). 2009;71(4):587–593. doi: 10.1111/j.1365-2265.2009.03544.x.

43. Rodríguez-Muñoz A., Vitales-Noyola M., Ramos-Levi A., Serrano-Somavilla A., González-Amaro R., Marazuela M. Levels of regulatory T cells CD69(+) NKG2D(+)IL-10(+) are increased in patients with autoimmune thyroid disorders. Endocrine. 2016;51(3):478–489. doi: 10.1007/s12020-015-0662-2.

44. Zhao J., Chen Y., Xu Z., Yang W., Zhu Z., Song Y., Liu J. Increased circulating follicular regulatory T cells in Hashimoto’s thyroiditis. Autoimmunity. 2018;51(7):345–351. doi: 10.1080/08916934.2018.1516759.

45. Kong Y.M., Okayasu I., Giraldo A.A., Beisel K.W., Sundick R.S., Rose N.R. et al. Tolerance to thyroglobulin by activating suppressor mechanisms. Ann N Y Acad Sci. 1982;392:191–209. doi: 10.1111/j.1749-6632.1982.tb36108.x.

46. Kong Y.M., Brown N.K., Morris G.P., Flynn J.C. The Essential Role of Circulating Thyroglobulin in Maintaining Dominance of Natural Regulatory T Cell Function to Prevent Autoimmune Thyroiditi. Horm Metab Res. 2015;47(10):711–720. doi: 10.1055/s-0035-1548872.

47. Urry Z., Chambers E.S., Xystrakis E., Dimeloe S., Richards D.F., Gabryšová L. et al. The role of 1α,25-dihydroxyvitamin D3 and cytokines in the promotion of distinct Foxp3+ and IL-10+ CD4+ T cells. Eur J Immunol. 2012;42(10):2697–2708. doi: 10.1002/eji.201242370.

48. Perga S., Martire S., Montarolo F., Giordani I., Spadaro M., Bono G. et al. The Footprints of Poly-Autoimmunity: Evidence for Common Biological Factors Involved in Multiple Sclerosis and Hashimoto’s Thyroiditis. Front Immunol. 2018;9:311. doi: 10.3389/fimmu.2018.00311.

49. Cooper J.D., Simmonds M.J., Walker N.M., Burren O., Brand O.J., Guo H. et al. Seven newly identified loci for autoimmune thyroid disease. Hum Mol Genet. 2012;21(23):5202–5208. doi: 10.1093/hmg/dds357.

50. Kayes T.D., Braley-Mullen H. Culture promotes transfer of thyroid epithelial cell hyperplasia and proliferation by reducing regulatory T cell numbers. Cell Immunol. 2013;285(1–2):84–91. doi: 10.1016/j.cellimm.2013.09.003.

51. Esposito M., Ruffini F., Bergami A., Garzetti L., Borsellino G., Battistini L. et al. IL-17- and IFN-gamma-secreting Foxp3+ T cells infiltrate the target tissue in experimental autoimmunity. J Immunol. 2010;185(12):7467–7473. doi: 10.4049/jimmunol.1001519.

52. Hall A.O., Beiting D.P., Tato C., John B., Oldenhove G., Lombana C.G. et al. The cytokines interleukin 27 and interferon-gamma promote distinct Treg cell populations required to limit infection-induced pathology. Immunity. 2012;37(3):511–523. doi: 10.1016/j.immuni.2012.06.014.

53. Langrish C.L., Chen Y., Blumenschein W.M., Mattson J., Basham B., Sedgwick J.D. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201(2):233–240. doi: 10.1084/jem.20041257.

54. Etesam Z., Nemati M., Ebrahimizadeh M.A., Ebrahimi H.A., Hajghani H., Khalili T. et al. Altered Expression of Specific Transcription Factors of Th17 (RORgammat, RORalpha) and Treg Lymphocytes (FOXP3) by Peripheral Blood Mononuclear Cells from Patients with Multiple Sclerosis. J Mol Neurosci. 2016;60(1):94–101. doi: 10.1007/s12031-016-0789-5.

55. Figueroa-Vega N., Alfonso-Perez M., Benedicto I., Sanchez-Madrid F., Gonzalez-Amaro R., Marazuela M. Increased circulating pro-inflammatory cytokines and Th17 lymphocytes in Hashimoto’s thyroiditis. J Clin Endocrinol Metab. 2010;95(2):953–962. doi: 10.1210/jc.2009-1719.

56. Qin Q., Liu P., Liu L., Wang R., Yan N., Yang J. et al. The increased but nonpredominant expression of Th17- and Th1-specific cytokines in Hashimoto’s thyroiditis but not in Graves’ disease. Braz J Med Biol Res. 2012;45(12):1202–1208. doi: 10.1590/s0100-879x2012007500168.

57. Zeng C., Shi X., Zhang B., Liu H., Zhang L., Ding W., Zhao Y. The imbalance of Th17/Th1/Tregs in patients with type 2 diabetes: relationship with metabolic factors and complications. J Mol Med (Berl). 2012;90(2):175–186. doi: 10.1007/s00109-011-0816-5.

58. Kleczynska W., Jakiela B., Plutecka H., Milewski M., Sanak M., Musial J. Imbalance between Th17 and regulatory T-cells in systemic lupus erythematosus. Folia Histochem Cytobiol. 2011;49(4):646–653. doi: 10.5603/fhc.2011.0088.

59. Li C., Yuan J., Zhu Y.F., Yang X.J., Wang Q., Xu J. et al. Imbalance of Th17/ Treg in Different Subtypes of Autoimmune Thyroid Diseases. Cell Physiol Biochem. 2016;40(1–2):245–252. doi: 10.1159/000452541.

60. Marazuela M., Garcia-Lopez M.A., Figueroa-Vega N., de la Fuente H., Alvarado-Sanchez B., Monsivais-Urenda A. et al. Regulatory T cells in human autoimmune thyroid disease. J Clin Endocrinol Metab. 2006;91(9):3639–3646. doi: 10.1210/jc.2005-2337.

61. Koenen H.J.P.M., Smeets R.L., Vink P.M., van Rijssen E., Boots A.M.H., Joosten I. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood. 2008;112(6):2340–2352. doi: 10.1182/blood-2008-01-133967.

62. Deknuydt F., Bioley G., Valmori D., Ayyoub M. IL-1beta and IL-2 convert human Treg into T(H)17 cells. Clini Immunol. 2009;131(2):298–307. doi: 10.1016/j.clim.2008.12.008.

63. Wang T., Sun X., Zhao J., Zhang J., Zhu H., Li C. et al. Regulatory T cells in rheumatoid arthritis showed increased plasticity toward Th17 but retained suppressive function in peripheral blood. Ann Rheum Dis. 2015;74(6):1293–1301. doi: 10.1136/annrheumdis-2013-204228.

64. Beriou G., Costantino C.M., Ashley C.W., Yang L., Kuchroo V.K., BaecherAllan C., Hafler D.A. IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood. 2009;113(18):4240–4249. doi: 10.1182/ blood-2008-10-183251.

65. Nurieva R., Yang X.O., Martinez G., Zhang Y., Panopoulos A.D., Ma L. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature. 2007;448(7152):480–483. doi: 10.1038/nature05969.

66. Zhou L., Lopes J.E., Chong M.M.W., Ivanov I.I., Min R., Victora G.D. et al. TGFbeta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature. 2008;453(7192):236–240. doi: 10.1038/ nature06878.

67. van Loosdregt J., Vercoulen Y., Guichelaar T., Gent Y.Y.J., Beekman J.M., van Beekum O. et al. Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood. 2010;115(5):965–974. doi: 10.1182/blood-2009-02-207118.

68. Beier U.H., Wang L., Bhatti T.R., Liu Y., Han R., Ge G. et al. Sirtuin-1 targeting promotes Foxp3+ T-regulatory cell function and prolongs allograft survival. Moll Cell Biol. 2011;31(5):1022–1029. doi: 10.1128/MCB.01206-10.

69. Akimova T., Xiao H., Liu Y., Bhatti T.R., Jiao J., Eruslanov E. et al. Targeting sirtuin-1 alleviates experimental autoimmune colitis by induction of Foxp3+ T-regulatory cells. Mucosal Immunol. 2014;7(5):1209–1220. doi: 10.1038/mi.2014.10.

70. Yang X., Lun Y., Jiang H., Liu X., Duan Z., Xin S., Zhang J. SIRT1-Regulated Abnormal Acetylation of FOXP3 Induces Regulatory T-Cell Function Defect in Hashimoto’s Thyroiditis. Thyroid. 2018;28(2):246–256. doi: 10.1089/thy.2017.0286.

71. Miyabe C., Miyabe Y., Strle K., Kim N.D., Stone J.H., Luster A.D., Unizony S. An expanded population of pathogenic regulatory T cells in giant cell arteritis is abrogated by IL-6 blockade therapy. Ann Rheum Dis. 2017;76(5):898–905. doi: 10.1136/annrheumdis-2016-210070.

72. Gualdoni G.A., Mayer K.A., Goschl L., Boucheron N., Ellmeier W., Zlabinger G.J. The AMP analog AICAR modulates the Treg/Th17 axis through enhancement of fatty acid oxidation. FASEB J. 2016;30(11):3800–3809. doi: 10.1096/fj.201600522R.

73. Park M.J., Lee S.Y., Moon S.J., Son H.J., Lee S.H., Kim E.K. et al. Metformin attenuates graft-versus-host disease via restricting mammalian target of rapamycin/signal transducer and activator of transcription 3 and promoting adenosine monophosphate-activated protein kinase-autophagy for the balance between T helper 17 and Tregs. Transl Res. 2016;173:115–130. doi: 10.1016/j.trsl.2016.03.006.

74. Xiao S., Yosef N., Yang J., Wang Y., Zhou L., Zhu C. et al. Small-molecule RORγt antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms. Immunity. 2014;40(4):477–489. doi: 10.1016/j.immuni.2014.04.004.

75. Takaishi M., Ishizaki M., Suzuki K., Isobe T., Shimozato T., Sano S. Oral administration of a novel RORγt antagonist attenuates psoriasis-like skin lesion of two independent mouse models through neutralization of IL-17. J Dermatol Sci. 2017;85(1):12–19. doi: 10.1016/j.jdermsci.2016.10.001.

76. Sfikakis P.P., Souliotis V.L., Fragiadaki K.G., Moutsopoulos H.M., Boletis J.N., Theofilopoulos A.N. Increased expression of the FoxP3 functional marker of regulatory T cells following B cell depletion with rituximab in patients with lupus nephritis. Clin Immunol. 2007;123(1):66–73. doi: 10.1016/j.clim.2006.12.006.

77. Cribbs A.P., Kennedy A., Penn H., Amjadi P., Green P., Read J.E. et al. Methotrexate Restores Regulatory T Cell Function Through Demethylation of the FoxP3 Upstream Enhancer in Patients With Rheumatoid Arthritis. Arthritis Rheumatol. 2015;67(5):1182–1192. doi: 10.1002/art.39031.

78. Liu Z.M., Wang K.P., Ma J., Guo Zheng S. The role of all-trans retinoic acid in the biology of Foxp3+ regulatory T cells. Cell Mol Immunol. 2015;12(5):553–557. doi: 10.1038/cmi.2014.133.

79. Garrido-Mesa N., Algieri F., Rodriguez Nogales A., Galvez J. Functional plasticity of Th17 cells: implications in gastrointestinal tract function. Int Rev Immunol. 2013;32(5–6):493–510. doi: 10.3109/08830185.2013.834899.

80. Ju J.H., Heo Y.J., Cho M.L., Jhun J.Y., Park J.S., Lee S.Y. et al. Modulation of STAT3 in rheumatoid synovial T cells suppresses Th17 differentiation and increases the proportion of Treg cells. Arthritis Rheum. 2012;64(11):3543–3552. doi: 10.1002/art.34601.

81. Cao Y., Jin X., Sun Y., Wen W. Therapeutic effect of mesenchymal stem cell on Hashimoto’s thyroiditis in a rat model by modulating Th17/Treg cell balance. Autoimmunity. 2020;53(1):35–45. doi: 10.1080/08916934.2019.1697689.


Для цитирования:


Жукова С.И., Каннер И.Д., Мамонтова Т.М., Шеломенцева Е.М., Максимов М.Л. Роль Т-регуляторных клеток в аутоиммунном тиреоидите. Медицинский Совет. 2020;(21):152-159. https://doi.org/10.21518/2079-701X-2020-21-152-159

For citation:


Zhukova S.I., Kanner I.D., Mamontova T.M., Shelomentceva E.M., Maximov M.L. The role of regulatory T cells in autoimmune thyroiditis. Meditsinskiy sovet = Medical Council. 2020;(21):152-159. (In Russ.) https://doi.org/10.21518/2079-701X-2020-21-152-159

Просмотров: 136


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)