Preview

Медицинский Совет

Расширенный поиск

Оценка системных воспалительных реакций и коагулопатии на фоне гормональной терапии при ковид-ассоциированном поражении легких

https://doi.org/10.21518/2079-701X-2020-21-230-237

Полный текст:

Аннотация

Механизмы COVID-19-ассоциированной коагулопатии (CAC) сложны и во многом отличаются от стандартных механизмов тромбоза у тяжелобольных пациентов. В этом обзоре представлен патогенез, диагностика и сравнение различных типов коагулопатий с САС. В ходе COVID-19-инфекции количество случаев внезапной смерти вне больницы увеличилось. Одна из возможных причин – высокая частота серьезных тромботических событий у пациентов с COVID-19. Однако патогенез этих опасных для жизни событий многофакторен и требует самостоятельного обсуждения.

Отклонения в лабораторных исследованиях системы гемостаза у пациентов, инфицированных SARS-CoV-2 с тяжелым течением, указывают на активацию системы свертывания крови, соответствующей сепсис-индуцированной коагулопатии (СИК) или ДВС. Тем не менее нарушения гемостаза при COVID-19 имеют характеристики, которые отличают их от ДВС при сепсисе.

Клинические и лабораторные особенности CAC частично совпадают с гемофагоцитарным синдромом, антифосфолипидным синдромом и тромботической микроангиопатией. В обзоре представлены данные об их сходстве и различиях.

Недостаточная диагностика или недостаточное лечение гиперкоагуляции могут объяснить высокую частоту необъяснимой смертности от COVID-19. Они могут быть связаны с потенциально предотвратимыми микрососудистыми и макрососудистыми тромбозами и последующими сердечно-сосудистыми осложнениями, включая повреждение миокарда и инфаркт, а также с недостаточной информативностью биомаркеров для их оценки.

Исследования выявления наиболее информативных биомаркеров для принятия решений об усилении антикоагулянтной профилактики у пациентов с тяжелой формой COVID-19 быстро развиваются, и все больше обращают внимание на ТЭГ и ROTEM. В обзоре представлены изменения CAC на фоне проведения гормональной терапии при COVID-19-ассоциированном поражении легких. Пульс-терапия высокими дозами ГКС оказывает быстрый противовоспалительный эффект, однако одновременно повышает уровень D-димера, что увеличивает риск венозного тромбоза и тромбоэмболий. 

Об авторах

В. В. Салухов
Военно-медицинская академия им. С.М. Кирова
Россия

д.м.н., начальник 1-й кафедры и клиники (терапии усовершенствования врачей) имени академика Н.С. Молчанова,

194044, Санкт-Петербург, ул. Академика Лебедева, д. 6



Н. И. Гуляев
3-й Центральный военный клинический госпиталь им. А.А. Вишневского
Россия

д.м.н., доцент, начальник кардиологического центра,

143420, г/о Красногорск, п. Новый, д. 1



Е. В. Дорохина
Военно-медицинская академия им. С.М. Кирова; 194044, Россия, Санкт-Петербург, ул. Академика Лебедева, д. 6
Россия

слушатель ординатуры 1-й кафедры и клиники (терапии усовершенствования врачей) имени академика Н.С. Молчанова,

194044, Санкт-Петербург, ул. Академика Лебедева, д. 6



Список литературы

1. Xu X., Yu C., Qu J., Zhang L., Jiang S., Huang D. et al. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2. Eur J Nucl Med Mol Imaging. 2020;47(5):1275–1280. doi: 10.1007/s00259-020-04735-9.

2. Iba T., Levy J.H., Levi M., Connors J.M., Thachil J. Coagulopathy of Coronavirus Disease 2019. Crit Care Med. 2020;48(9):1358–1364. doi: 10.1097/CCM.0000000000004458.

3. Levi M., Thachil J., Iba T., Levy J.H. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020;7(6):438–440. doi: 10.1016/S2352-3026(20)30145-9.

4. Middeldorp S., Coppens M., van Haaps T.F., Foppen M., Vlaar A.P., Müller M.C.A. et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost. 2020;18(8):1995–2002. doi: 10.1111/jth.14888.

5. Wu Z., McGoogan J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239–1242. doi: 10.1001/jama.2020.2648.

6. Thachil J., Tang N., Gando S., Falanga A., Cattaneo M., Levi M. et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18(5):1023–1026. doi: 10.1111/jth.14810.

7. Wichmann D., Sperhake J.P., Lütgehetmann M., Steurer S., Edler C., Heinemann A. et al. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19: A Prospective Cohort Study. Ann Intern Med. 2020;173(4):268–277. doi: 10.7326/M20-2003.

8. Moores G., Warkentin T.E., Mohammed A.M., Jevtic S.D., Zeller M.P., Perera K.S. Spontaneous heparin-induced thrombocytopenia presenting as cerebral venous sinus thrombosis. Neurol Clin Pract. 2020;372(5):492–494. doi: 10.1212/CPJ.0000000000000805.

9. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;(4):844–847. doi: 10.1111/jth.14768.

10. Kabrhel C., Mark Courtney D., Camargo C.A. Jr., Plewa M.C., Nordenholz K.E., Moore C.L. et al. Factors associated with positive D-dimer results in patients evaluated for pulmonary embolism. Acad Emerg Med. 2010;17(6):589–597. doi: 10.1111/j.1553-2712.2010.00765.x.

11. Chaudhary R., Kreutz R.P., Bliden K.P., Tantry U.S., Gurbel P.A. Personalizing Antithrombotic Therapy in COVID-19: Role of Thromboelastography and Thromboelastometry. Thromb Haemost. 2020;120(11):1594–1596. doi: 10.1055/s-0040-1714217.

12. Gurbel P.A., Bliden K.P., Tantry U.S., Monroe A.L., Muresan A.A., Brunner N.E. et al. First report of the point-of-care TEG: A technical validation study of the TEG-6S system. Platelets. 2016;27(7):642–649. doi: 10.3109/09537104.2016.1153617.

13. Panigada M., Bottino N., Tagliabue P., Grasselli G., Novembrino C., Chantarangkul V. et al. Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemost. 2020;18(7):1738–1742. doi: 10.1111/jth.14850.

14. Wright F.L., Vogler T.O., Moore E.E., Moore H.B., Wohlauer M.V., Urban S. et al. Fibrinolysis Shutdown Correlation with Thromboembolic Events in Severe COVID-19 Infection. J Am Coll Surg. 2020;231(2):193–203.e1. doi: 10.1016/j.jamcollsurg.2020.05.007.

15. Maatman T.K., Jalali F., Feizpour C., McGuire S.P., Kinnaman G., Hartwell J.L. et al. Routine Venous Thromboembolism Prophylaxis May Be Inadequate in the Hypercoagulable State of Severe Coronavirus Disease 2019. Crit Care Med. 2020;48(9):e783–e790. doi: 10.1097/CCM.0000000000004466.

16. Mortus J.R., Manek S.E., Brubaker L.S., Loor M., Angel C.M., Trautner B.W., Rosengart T.K. Thromboelastographic results and hypercoagulability syndrome in patients with coro-navirus disease 2019 who are critically ill. JAMA Netw Open. 2020;3(06):e2011192. doi: 10.1001/jamanetworkopen.2020.11192.

17. Pavoni V., Gianesello L., Pazzi M., Stera C., Meconi T., Frigieri F.C. Evaluation of coagulation function by rotation thromboelastometry in critically ill patients with severe COVID-19 pneumonia. J Thromb Thrombolysis. 2020;50(2):281–286. doi: 10.1007/s11239-020-02130-7.

18. Barnes G.D., Burnett A., Allen A., Blumenstein M., Clark N.P., Cuker A. et al. Thromboembolism and anticoagulant therapy during the COVID-19 pandemic: interim clinical guidance from the anticoagulation forum. J Thromb Thrombolysis. 2020;50(1):72–81. doi: 10.1007/s11239-020-02138-z.

19. Connors J.M., Levy J.H. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020;13(23):2033–2040. doi: 10.1182/blood.2020006000.

20. Ramachandra S., Zaidi F., Aggarwal A., Gera R. Recent advances in diagnostic and therapeutic guidelines for primary and secondary hemophagocytic lymphohistiocytosis. Blood Cells Mol Dis. 2017;64:53–57. doi: 10.1016/j.bcmd.2016.10.023.

21. Henter J.I., Horne A., Aricó M., Egeler R.M., Filipovich A.H. et al. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48(2):124–131. doi: 10.1002/pbc.21039.

22. Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034. doi: 10.1016/S0140-6736(20)30628-0.

23. Ruan Q., Yang K., Wang W., Jiang L., Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846–848. doi: 10.1007/s00134-020-05991-x.

24. Kleynberg R.L., Schiller G.J. Secondary hemophagocytic lymphohistiocytosis in adults: an update on diagnosis and therapy. Clin Adv Hematol Oncol. 2012;10(11):726–732. Available at: https://pubmed.ncbi.nlm.nih.gov/23271259.

25. Dimopoulos G., de Mast Q., Markou N., Theodorakopoulou M., Komnos A., Mouktaroudi M. et al. Favorable anakinra responses in severe COVID-19 patients with secondary hemophagocytic lymphohistiocytosis. Cell Host Microbe. 2020;28(1):117–123.e1. doi: 10.1016/j.chom.2020.05.007.

26. Radbel J., Narayanan N., Bhatt P.J. Use of tocilizumab for COVID-19-induced cytokine release syndrome: a cautionary case report. Chest. 2020;15891:E15–E19. doi: 10.1016/j.chest.2020.04.024.

27. Zhang Y., Xiao M., Zhang S., Xia P., Cao W., Jiang W. et al. Coagulopathy and antiphospholipid antibodies in patients with COVID-19. N Engl J Med. 2020;382(17):e38. doi: 10.1056/NEJMc2007575.

28. Groot N., de Graeff N., Avcin T., Bader-Meunier B., Dolezalova P., Feldman B. et al. European evidence-based recommendations for diagnosis and treatment of paediatric antiphospholipid syndrome: the SHARE initiative. Ann Rheum Dis. 2017;76(10):1637–1641. doi: 10.1136/annrheumdis-2016-211001.

29. Wiedermann F.J., Lederer W., Mayr A.J., Sepp N., Herold M., Schobersberger W. Prospective observational study of antiphospholipid antibodies in acute lung injury and acute respiratory distress syndrome: comparison with catastrophic antiphospholipid syndrome. Lupus. 2003;12(6):462–467. doi: 10.1191/0961203303lu413oa.

30. Espinosa G., Rodríguez-Pintó I., Cervera R. Catastrophic antiphospholipid syndrome: an update. Panminerva Med. 2017;59(3):254–268. doi: 10.23736/S0031-0808.17.03324-9.

31. Garcia D., Erkan D. Diagnosis and management of the antiphospholipid syndrome. N Engl J Med. 2018;378(21):2010–2021. doi: 10.1056/NEJMra1705454.

32. Zhou X., Li Y., Yang Q. Antiplatelet therapy following percutaneous coronary intervention in patients complicated by COVID-19: implications from clinical features to pathological findings. Circulation. 2020;141(22):1736–1738. doi: 10.1161/CIRCULATIONAHA.120.046988.

33. Escher R., Breakey N., Lämmle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res. 2020;190:62. doi: 10.1016/j.thromres.2020.04.014.

34. Campbell C.M., Kahwash R. Will complement inhibition be the new target in treating COVID-19 related systemic thrombosis? Circulation. 2020;141(22):1739–1741. doi: 10.1161/CIRCULATIONAHA.120.047419.

35. Helms J., Tacquard C., Severac F., Leonard-Lorant I., Ohana M., Delabranche X. et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46(6):1089–1098. doi: 10.1007/s00134-020-06062-x.

36. Gavriilaki E., Brodsky R.A. Severe COVID-19 infection and thrombotic microangiopathy: success does not come easily. Br J Haematol. 2020;189(6):e227–e230. doi: 10.1111/bjh.16783.

37. Magro C., Mulvey J.J., Berlin D., Nuovo G., Salvatore S., Harp J. et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl Res. 2020;220:1–13. doi: 10.1016/j.trsl.2020.04.007.

38. Martel N., Lee J., Wells P.S. Risk for heparin-induced thrombocytopenia with unfractionated and low-molecular-weight heparin thromboprophylaxis: a meta-analysis. Blood. 2005;106(8):2710–2715. doi: 10.1182/blood2005-04-1546.

39. Greinacher A., Selleng K., Warkentin T.E. Autoimmune heparin-induced thrombocytopenia. J Thromb Haemost. 2017;15(11):2099–2114. doi: 10.1111/jth.13813.

40. Мареев В.Ю., Орлова Я.А., Павликова Е.П., Мацкеплишвили С.Т., Краснова Т.Н., Малахов П.С. и др. Пульс-Терапия стероидными гормонами больных с Коронавирусной пневмонией (COVID-19), системным воспалением и риском венозных тромбозов и тромбоэмболий (исследование ПУТНИК). Кардиология. 2020;60(6):15–29. doi: 10.18087/cardio.2020.6.n1226.


Для цитирования:


Салухов В.В., Гуляев Н.И., Дорохина Е.В. Оценка системных воспалительных реакций и коагулопатии на фоне гормональной терапии при ковид-ассоциированном поражении легких. Медицинский Совет. 2020;(21):230-237. https://doi.org/10.21518/2079-701X-2020-21-230-237

For citation:


Salukhov V.V., Gulyaev N.I., Dorokhina E.V. Assessment of systemic inflammatory reactions and coagulopathy against the background of hormonal therapy in covid-associated lung damage. Meditsinskiy sovet = Medical Council. 2020;(21):230-237. (In Russ.) https://doi.org/10.21518/2079-701X-2020-21-230-237

Просмотров: 133


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)