Preview

Meditsinskiy sovet = Medical Council

Advanced search

Assessment of systemic inflammatory reactions and coagulopathy against the background of hormonal therapy in covid-associated lung damage

https://doi.org/10.21518/2079-701X-2020-21-230-237

Abstract

The mechanisms of COVID-19-associated coagulopathy (CAC) are complex and differ in many ways from the standard mechanisms of thrombosis in critically ill patients. This review presents the pathogenesis, diagnosis, and comparison of various types of coagulopathy with SAS. During COVID-19 infection, the number of sudden deaths outside the hospital increased. One possible reason is the high incidence of serious thrombotic events in patients with COVID-19. However, the pathogenesis of these life-threatening events is multifactorial and requires independent discussion.

Deviations in laboratory studies of the hemostatic system in patients infected with SARS-CoV-2 with a severe course indicate the activation of the blood coagulation system corresponding to sepsis-induced coagulopathy (SIC) or DIC. However, hemostasis disorders in COVID-19 have characteristics that distinguish them from DIC in sepsis.

The clinical and laboratory features of CAC overlap with hemophagocytic syndrome, antiphospholipid syndrome, and thrombotic microangiopathy. The review presents data on their similarities and differences.

Inadequate diagnosis or inadequate treatment of hypercoagulability may explain the high incidence of unexplained deaths from COVID-19. They can be associated with potentially preventable microvascular and macrovascular thrombosis and subsequent cardiovascular complications, including myocardial injury and infarction, as well as insufficient information content of biomarkers for their assessment.

Research to identify the most informative biomarkers for decision-making to intensify anticoagulant prophylaxis in patients with severe COVID-19 is progressing rapidly, with increasing focus on TEG and ROTEM.

The review presents changes in CAC during hormone therapy for COVID-19-associated lung damage. Pulse therapy with high doses of GCS has a rapid anti-inflammatory effect, but at the same time increases the level of D-dimer, which increases the risk of venous thrombosis and thromboembolism. 

About the Authors

V. V. Salukhov
Kirov Military Medical Academy
Russian Federation

Dr. of Sci. (Med.), Head of the First Department and Clinic (Therapy for Advanced Training of Doctors) named after Academician N.S. Molchanova, 

6, Akademik Lebedev St., St Petersburg, 194044



N. I. Gulyaev
3 Central Military Clinical Hospital named after A.A. Vishnevsky
Russian Federation

Dr. of Sci. (Med.), Associate Professor, Head of the Cardiology Center, 

1, pos. New, Krasnogorsk urban district, 143420



E. V. Dorokhina
Kirov Military Medical Academy
Russian Federation

Residency Student of the First Department and Clinic (Therapy for Advanced Training of Doctors) named after Academician N.S. Molchanova, 

6, Akademik Lebedev St., St Petersburg, 194044



References

1. Xu X., Yu C., Qu J., Zhang L., Jiang S., Huang D. et al. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2. Eur J Nucl Med Mol Imaging. 2020;47(5):1275–1280. doi: 10.1007/s00259-020-04735-9.

2. Iba T., Levy J.H., Levi M., Connors J.M., Thachil J. Coagulopathy of Coronavirus Disease 2019. Crit Care Med. 2020;48(9):1358–1364. doi: 10.1097/CCM.0000000000004458.

3. Levi M., Thachil J., Iba T., Levy J.H. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020;7(6):438–440. doi: 10.1016/S2352-3026(20)30145-9.

4. Middeldorp S., Coppens M., van Haaps T.F., Foppen M., Vlaar A.P., Müller M.C.A. et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost. 2020;18(8):1995–2002. doi: 10.1111/jth.14888.

5. Wu Z., McGoogan J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239–1242. doi: 10.1001/jama.2020.2648.

6. Thachil J., Tang N., Gando S., Falanga A., Cattaneo M., Levi M. et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18(5):1023–1026. doi: 10.1111/jth.14810.

7. Wichmann D., Sperhake J.P., Lütgehetmann M., Steurer S., Edler C., Heinemann A. et al. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19: A Prospective Cohort Study. Ann Intern Med. 2020;173(4):268–277. doi: 10.7326/M20-2003.

8. Moores G., Warkentin T.E., Mohammed A.M., Jevtic S.D., Zeller M.P., Perera K.S. Spontaneous heparin-induced thrombocytopenia presenting as cerebral venous sinus thrombosis. Neurol Clin Pract. 2020;372(5):492–494. doi: 10.1212/CPJ.0000000000000805.

9. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;(4):844–847. doi: 10.1111/jth.14768.

10. Kabrhel C., Mark Courtney D., Camargo C.A. Jr., Plewa M.C., Nordenholz K.E., Moore C.L. et al. Factors associated with positive D-dimer results in patients evaluated for pulmonary embolism. Acad Emerg Med. 2010;17(6):589–597. doi: 10.1111/j.1553-2712.2010.00765.x.

11. Chaudhary R., Kreutz R.P., Bliden K.P., Tantry U.S., Gurbel P.A. Personalizing Antithrombotic Therapy in COVID-19: Role of Thromboelastography and Thromboelastometry. Thromb Haemost. 2020;120(11):1594–1596. doi: 10.1055/s-0040-1714217.

12. Gurbel P.A., Bliden K.P., Tantry U.S., Monroe A.L., Muresan A.A., Brunner N.E. et al. First report of the point-of-care TEG: A technical validation study of the TEG-6S system. Platelets. 2016;27(7):642–649. doi: 10.3109/09537104.2016.1153617.

13. Panigada M., Bottino N., Tagliabue P., Grasselli G., Novembrino C., Chantarangkul V. et al. Hypercoagulability of COVID-19 patients in intensive care unit: A report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemost. 2020;18(7):1738–1742. doi: 10.1111/jth.14850.

14. Wright F.L., Vogler T.O., Moore E.E., Moore H.B., Wohlauer M.V., Urban S. et al. Fibrinolysis Shutdown Correlation with Thromboembolic Events in Severe COVID-19 Infection. J Am Coll Surg. 2020;231(2):193–203.e1. doi: 10.1016/j.jamcollsurg.2020.05.007.

15. Maatman T.K., Jalali F., Feizpour C., McGuire S.P., Kinnaman G., Hartwell J.L. et al. Routine Venous Thromboembolism Prophylaxis May Be Inadequate in the Hypercoagulable State of Severe Coronavirus Disease 2019. Crit Care Med. 2020;48(9):e783–e790. doi: 10.1097/CCM.0000000000004466.

16. Mortus J.R., Manek S.E., Brubaker L.S., Loor M., Angel C.M., Trautner B.W., Rosengart T.K. Thromboelastographic results and hypercoagulability syndrome in patients with coro-navirus disease 2019 who are critically ill. JAMA Netw Open. 2020;3(06):e2011192. doi: 10.1001/jamanetworkopen.2020.11192.

17. Pavoni V., Gianesello L., Pazzi M., Stera C., Meconi T., Frigieri F.C. Evaluation of coagulation function by rotation thromboelastometry in critically ill patients with severe COVID-19 pneumonia. J Thromb Thrombolysis. 2020;50(2):281–286. doi: 10.1007/s11239-020-02130-7.

18. Barnes G.D., Burnett A., Allen A., Blumenstein M., Clark N.P., Cuker A. et al. Thromboembolism and anticoagulant therapy during the COVID-19 pandemic: interim clinical guidance from the anticoagulation forum. J Thromb Thrombolysis. 2020;50(1):72–81. doi: 10.1007/s11239-020-02138-z.

19. Connors J.M., Levy J.H. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020;13(23):2033–2040. doi: 10.1182/blood.2020006000.

20. Ramachandra S., Zaidi F., Aggarwal A., Gera R. Recent advances in diagnostic and therapeutic guidelines for primary and secondary hemophagocytic lymphohistiocytosis. Blood Cells Mol Dis. 2017;64:53–57. doi: 10.1016/j.bcmd.2016.10.023.

21. Henter J.I., Horne A., Aricó M., Egeler R.M., Filipovich A.H. et al. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48(2):124–131. doi: 10.1002/pbc.21039.

22. Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034. doi: 10.1016/S0140-6736(20)30628-0.

23. Ruan Q., Yang K., Wang W., Jiang L., Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846–848. doi: 10.1007/s00134-020-05991-x.

24. Kleynberg R.L., Schiller G.J. Secondary hemophagocytic lymphohistiocytosis in adults: an update on diagnosis and therapy. Clin Adv Hematol Oncol. 2012;10(11):726–732. Available at: https://pubmed.ncbi.nlm.nih.gov/23271259.

25. Dimopoulos G., de Mast Q., Markou N., Theodorakopoulou M., Komnos A., Mouktaroudi M. et al. Favorable anakinra responses in severe COVID-19 patients with secondary hemophagocytic lymphohistiocytosis. Cell Host Microbe. 2020;28(1):117–123.e1. doi: 10.1016/j.chom.2020.05.007.

26. Radbel J., Narayanan N., Bhatt P.J. Use of tocilizumab for COVID-19-induced cytokine release syndrome: a cautionary case report. Chest. 2020;15891:E15–E19. doi: 10.1016/j.chest.2020.04.024.

27. Zhang Y., Xiao M., Zhang S., Xia P., Cao W., Jiang W. et al. Coagulopathy and antiphospholipid antibodies in patients with COVID-19. N Engl J Med. 2020;382(17):e38. doi: 10.1056/NEJMc2007575.

28. Groot N., de Graeff N., Avcin T., Bader-Meunier B., Dolezalova P., Feldman B. et al. European evidence-based recommendations for diagnosis and treatment of paediatric antiphospholipid syndrome: the SHARE initiative. Ann Rheum Dis. 2017;76(10):1637–1641. doi: 10.1136/annrheumdis-2016-211001.

29. Wiedermann F.J., Lederer W., Mayr A.J., Sepp N., Herold M., Schobersberger W. Prospective observational study of antiphospholipid antibodies in acute lung injury and acute respiratory distress syndrome: comparison with catastrophic antiphospholipid syndrome. Lupus. 2003;12(6):462–467. doi: 10.1191/0961203303lu413oa.

30. Espinosa G., Rodríguez-Pintó I., Cervera R. Catastrophic antiphospholipid syndrome: an update. Panminerva Med. 2017;59(3):254–268. doi: 10.23736/S0031-0808.17.03324-9.

31. Garcia D., Erkan D. Diagnosis and management of the antiphospholipid syndrome. N Engl J Med. 2018;378(21):2010–2021. doi: 10.1056/NEJMra1705454.

32. Zhou X., Li Y., Yang Q. Antiplatelet therapy following percutaneous coronary intervention in patients complicated by COVID-19: implications from clinical features to pathological findings. Circulation. 2020;141(22):1736–1738. doi: 10.1161/CIRCULATIONAHA.120.046988.

33. Escher R., Breakey N., Lämmle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res. 2020;190:62. doi: 10.1016/j.thromres.2020.04.014.

34. Campbell C.M., Kahwash R. Will complement inhibition be the new target in treating COVID-19 related systemic thrombosis? Circulation. 2020;141(22):1739–1741. doi: 10.1161/CIRCULATIONAHA.120.047419.

35. Helms J., Tacquard C., Severac F., Leonard-Lorant I., Ohana M., Delabranche X. et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46(6):1089–1098. doi: 10.1007/s00134-020-06062-x.

36. Gavriilaki E., Brodsky R.A. Severe COVID-19 infection and thrombotic microangiopathy: success does not come easily. Br J Haematol. 2020;189(6):e227–e230. doi: 10.1111/bjh.16783.

37. Magro C., Mulvey J.J., Berlin D., Nuovo G., Salvatore S., Harp J. et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl Res. 2020;220:1–13. doi: 10.1016/j.trsl.2020.04.007.

38. Martel N., Lee J., Wells P.S. Risk for heparin-induced thrombocytopenia with unfractionated and low-molecular-weight heparin thromboprophylaxis: a meta-analysis. Blood. 2005;106(8):2710–2715. doi: 10.1182/blood2005-04-1546.

39. Greinacher A., Selleng K., Warkentin T.E. Autoimmune heparin-induced thrombocytopenia. J Thromb Haemost. 2017;15(11):2099–2114. doi: 10.1111/jth.13813.

40. Mareev V.Yu., Orlova Y.A., Pavlikova E.P., Matskeplishvili S.T., Krasnova T.N., Malahov P.S. et al. Steroid pulse-therapy in patients With coronAvirus Pneumonia (COVID-19), sYstemic inFlammation And Risk of vEnous thRombosis and thromboembolism (WAYFARER Study). Kardiologiia. 2020;60(6):15–29. doi: 10.18087/cardio.2020.6.n1226.


Review

For citations:


Salukhov VV, Gulyaev NI, Dorokhina EV. Assessment of systemic inflammatory reactions and coagulopathy against the background of hormonal therapy in covid-associated lung damage. Meditsinskiy sovet = Medical Council. 2020;(21):230-237. (In Russ.) https://doi.org/10.21518/2079-701X-2020-21-230-237

Views: 979


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)