Preview

Медицинский Совет

Расширенный поиск

Случай тяжелого поражения печени при COVID-19

https://doi.org/10.21518/2079-701X-2021-5-84-91

Полный текст:

Аннотация

Вспышка коронавирусного заболевания 2019 г. (COVID-19), вызванного тяжелым острым респираторным синдромом коронавируса 2 (SARS-CoV-2), является глобальной проблемой с декабря 2019 г. Хотя у большинства пациентов с COVID-19 наблюдаются легкие клинические проявления, примерно у 5% этих пациентов заболевание в конечном итоге прогрессирует до тяжелого повреждения легких или даже полиорганной дисфункции. Эта ситуация представляет собой различные проблемы для гепатологии. В  контексте поражения печени у  пациентов с  COVID-19  необходимо решить несколько ключевых проблем. Например, важно определить, может ли SARS-CoV-2 напрямую проникать в печень, особенно в тех случаях, когда кажется, что ACE2 незначительно экспрессируется в гепатоцитах. Кроме того, механизмы, лежащие в основе дисфункции печени у пациентов с COVID-19, являются многофакторными и связаны с гипервоспалением, дисрегулируемыми иммунными ответами, аномальной коагуляцией и  лекарствами. В  статье описывается потенциальный патогенез поражения печени, связанного с  COVID- 19. Гистопатологические данные наводят на  мысль о  заметном нарушении внутрипеченочной сети кровеносных сосудов, вторичном по отношению к системным изменениям, вызванным вирусом, который может запускать каскад коагуляции и повреждать эндотелиальный слой кровеносных сосудов. Также приводится клинический случай полиэтиологического поражения печени у молодого мужчины, приведшего к смерти. На фоне инфекции COVID-19 у пациента возник массивный тромбоз сосудов печени с последующим развитием некроза – фиброза – цирроза – острой печеночной недостаточности, которая явилась причиной летального исхода. 

Об авторах

Е. Ю. Плотникова
Кемеровский государственный медицинский университет
Россия

д.м.н., профессор кафедры подготовки врачей первичного звена здравоохранения, руководитель курса клинической гастроэнтерологии, 

650029, Кемерово, ул. Ворошилова, д. 22а



Е. Н. Баранова
Кемеровский государственный медицинский университет; Кузбасская клиническая больница скорой медицинской помощи имени М.А. Подгорбунского
Россия

к.м.н., доцент кафедры госпитальной терапии и клинической фармакологии, 650029, Кемерово, ул. Ворошилова, д. 22а; 

65000, Кемерово, ул. Николая Островского, д. 22, корп. 2



М. С. Карягина
Кузбасская клиническая больница скорой медицинской помощи имени М.А. Подгорбунского
Россия

врач-гастроэнтеролог гастроэнтерологического отделения Кузбасского гепатологического центра, 

65000, Кемерово, ул. Николая Островского, д. 22, корп. 2



О. А. Воросова
Кузбасская клиническая больница скорой медицинской помощи имени М.А. Подгорбунского
Россия

врач-гастроэнтеролог гастроэнтерологического отделения Кузбасского гепатологического центра, 

65000, Кемерово, ул. Николая Островского, д. 22, корп. 2



К. А. Краснов
Кемеровский государственный медицинский университет; Кузбасская клиническая больница скорой медицинской помощи имени М.А. Подгорбунского;
Россия

к.м.н., доцент кафедры госпитальной хирургии, 650029, Кемерово, ул. Ворошилова, д. 22а; 

директор Кузбасского гепатологического центра, 65000, Кемерово, ул. Николая Островского, д. 22, корп. 2



Список литературы

1. Xie M., Chen Q. Insight into 2019 novel coronavirus – An updated interim review and lessons from SARS-CoV and MERS-CoV. Int J Infect Dis. 2020;94: 119–124. doi: 10.1016/j.ijid.2020.03.071.

2. Zhang C., Shi L., Wang F.S. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol. 2020;5(5):428–430. doi: 10.1016/S2468-1253(20)30057-1.

3. Xu L., Liu J., Lu M., Yang D., Zheng X. Liver injury during highly pathogenic human coronavirus infections. Liver Int. 2020;40(5):998–1004. doi: 10.1111/liv.14435.

4. Wiersinga W.J., Rhodes A., Cheng A.C., Peacock S.J., Prescott H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID- 19): A Review. JAMA. 2020;324(8):782–793. doi: 10.1001/jama.2020.12839.

5. Li H., Liu L., Zhang D., Xu J., Dai H., Tang N. et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020;395(10235):1517–1520. doi: 10.1016/S0140-6736(20)30920-X.

6. Marra M.A., Jones S.J., Astell C.R., Holt R.A., Brooks-Wilson A., Butterfield Y.S. et al. The genome sequence of the SARS-associated coronavirus. Science. 2003;300(5624):1399–1404. doi: 10.1126/science.1085953.

7. Andersen K.G., Rambaut A., Lipkin W.I., Holmes E.C., Garry R.F. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450–452. doi: 10.1038/s41591-020-0820-9.

8. De Wit E., Van Doremalen N., Falzarano D., Munster V.J. SARS and MERS: Recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14(8):523–534. doi: 10.1038/nrmicro.2016.81.

9. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor Article SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271–280.e8. doi: 10.1016/j.cell.2020.02.052.

10. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi: 10.1038/s41586-020-2012-7.

11. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5.

12. Guan W., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X. et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. doi: 10.1056/NEJMoa2002032.

13. Skok K., Stelzl E., Trauner M., Kessler H.H., Lax S.F. Post-mortem viral dynamics and tropism in COVID-19 patients in correlation with organ damage. Virchows Arch. 2020;478(2):343–353. doi: 10.1007/s00428-020-02903-8.

14. Li R., Qiao S., Zhang G. Analysis of angiotensin-converting enzyme 2 (ACE2) from different species sheds some light on cross-species receptor usage of a novel coronavirus 2019-nCoV. J Infect. 2020;80(4):469–496. doi: 10.1016/j.jinf.2020.02.013.

15. Xu H., Zhong L., Deng J., Peng J., Dan H., Zeng X. et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020;12(1):8. doi: 10.1038/s41368-020-0074-x.

16. Turner A.J., Hiscox J.A., Hooper N.M. ACE2: From vasopeptidase to SARS virus receptor. Trends Pharmacol Sci. 2004;25(6):291–294. doi: 10.1016/j.tips.2004.04.001.

17. Oyelade T., Alqahtani J., Canciani G. Prognosis of COVID-19 in Patients with Liver and Kidney Diseases: An Early Systematic Review and Meta-Analysis. Trop Med Infect Dis. 2020;5(2):80. doi: 10.3390/tropicalmed5020080.

18. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi: 10.1016/S0140-6736(20)30566-3.

19. Wu C., Chen X., Cai Y., Xia J., Zhou X., Xu S. et al. Risk Factors Associated with Acute Respiratory Distress Syndrome and Death in Patients with Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934–943. doi: 10.1001/jamainternmed.2020.0994.

20. Bangash M.N., Patel J., Parekh D. COVID-19 and the liver: little cause for concern. Lancet Gastroenterol Hepatol. 2020;5(6):529–530. doi: 10.1016/S2468-1253(20)30084-4.

21. Boeckmans J., Rodrigues R.M., Demuyser T., Piérard D., Vanhaecke T., Rogiers V. COVID-19 and drug-induced liver injury: a problem of plenty or a petty point? Arch Toxicol. 2020;94(4):1367–1369. doi: 10.1007/s00204-020-02734-1.

22. Garrido I., Liberal R., Macedo G. Review article: COVID-19 and liver disease – what we know on 1st May 2020. Aliment Pharmacol Ther. 2020;52(2):267–275. doi: 10.1111/apt.15813.

23. Kulkarni A.V., Kumar P., Tevethia H.V., Premkumar M., Arab J.P., Candia R. et al. Systematic review with meta-analysis: liver manifestations and outcomes in COVID-19. Aliment Pharmacol Ther. 2020;52(4):548–599. doi: 10.1111/apt.15916.

24. Bertolini A., van de Peppel I.P., Bodewes F.A., Moshage H., Fantin A., Farinati F. et al. Abnormal liver function tests in COVID-19 patients: relevance and potential pathogenesis. Hepatology. 2020;72(5):1864–1872. doi: 10.1002/hep.31480.

25. Wu J., Song S., Cao H.C., Li L.J. Liver diseases in COVID-19: Etiology, treatment and prognosis. World J Gastroenterol. 2020;26(19):2286–2293. doi: 10.3748/wjg.v26.i19.2286.

26. Yadav D.K., Singh A., Zhang Q., Bai X., Zhang W., Yadav R.K. et al. Involvement of liver in COVID-19: systematic review and meta-analysis. Gut. 2021;70(4):807–809. doi: 10.1136/gutjnl-2020-322072.

27. Jothimani D., Venugopal R., Abedin M.F., Kaliamoorthy I., Rela M. COVID-19 and Liver. J Hepatol. 2020;73(5):1231–1240. doi: 10.1016/j.jhep.2020.06.006.

28. Wang Y., Liu S., Liu H., Li W., Lin F., Jiang L. et al. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. J Hepatol. 2020;73(4):807–816. J Hepatol. 2020;73(4):807–816. doi: 10.1016/j.jhep.2020.05.002.

29. Wang Y., Lu F., Zhao J. Reply to: Correspondence relating to “SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19”. J Hepatol. 2020;73(4):996–998. doi: 10.1016/j.jhep.2020.06.028.

30. Kucharski A.J., Russell T.W., Diamond C., Liu Y., Edmunds J., Funk S., Eggo R.M. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis. 2020;20(5):553–558. doi: 10.1016/S1473-3099(20)30144-4.

31. Kumar M.P., Mishra S., Jha D.K., Shukla J., Choudhury A., Mohindra R. et al. Coronavirus disease (COVID-19) and the liver: a comprehensive systematic review and meta-analysis. Hepatol Int. 2020;14(5):711–722. doi: 10.1007/s12072-020-10071-9.

32. Paliogiannis P., Zinellu A. Bilirubin levels in patients with mild and severe Covid-19: A pooled analysis. Liver Int. 2020;40(7):1787–1788. doi: 10.1111/liv.14477.

33. Parasa S., Desai M., Thoguluva Chandrasekar V., Patel H.K., Kennedy K.F., Roesch T. et al. Prevalence of Gastrointestinal Symptoms and Fecal Viral Shedding in Patients With Coronavirus Disease 2019. JAMA Netw Open. 2020;3(6):e2011335. doi: 10.1001/jamanetworkopen.2020.11335.

34. Cai Q., Huang D., Yu H., Zhu Z., Xia Z., Su Y. et al. COVID-19: Abnormal liver function tests. J Hepatol. 2020;73(3):566–574. doi: 10.1016/j. jhep.2020.04.006.

35. Bernal-Monterde V., Casas-Deza D., Letona-Giménez L., de la Llama-Celis N., Calmarza P., Sierra-Gabarda O. et al. SARS-CoV-2 Infection Induces a Dual Response in Liver Function Tests: Association with Mortality during Hospitalization. Biomedicines. 2020;8(9):328. doi: 10.3390/biomedicines8090328.

36. Pascarella G., Strumia A., Piliego C., Bruno F., oDel Buono R., Costa F. et al. COVID-19 diagnosis and management: a comprehensive review. J Intern Med. 2020;288(2):192–206. doi: 10.1111/joim.13091.

37. Varga Z., Flammer A.J., Steiger P., Haberecker M., Andermatt R., Zinkernagel A.S. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–1418. doi: 10.1016/S0140-6736(20)30937-5.

38. Liu W., Tao Z.W., Wang L., Yuan M.L., Liu K., Zhou L. et al. Analysis of factors associated with disease outcomes in hospitalized patients with 2019 novel coronavirus disease. Chin Med J (Engl). 2020;133(9):1032–1038. doi: 10.1097/CM9.0000000000000775.

39. Trevenzoli M., Guarnaccia A., Alberici I., Fassan M., Di Meco E., Farinati F., Cattelan A.M. SARS-CoV-2 and hepatitis. J Gastrointestin Liver Dis. 2020;29(3):473–475. doi: 10.15403/jgld-2747.

40. Gholizadeh P., Safari R., Marofi P., Zeinalzadeh E., Pagliano P., Ganbarov K. et al. Alteration of Liver Biomarkers in Patients with SARS-CoV-2 (COVID- 19). J Inflamm Res. 2020;13:285–292. doi: 10.2147/JIR.S257078.

41. Lax S.F., Skok K., Zechner P., Kessler H.H., Kaufmann N., Koelblinger C. et al. Pulmonary arterial thrombosis in covid-19 with fatal outcome: results from a prospective, single-center, clinicopathologic case series. Ann Intern Med. 2020;173(5):350–361. doi: 10.7326/M20-2566.

42. Ji D., Qin E., Xu J., Zhang D., Cheng G., Wang Y., Lau G. et al. Non-alcoholic fatty liver diseases in patients with COVID-19: A retrospective study. J Hepatol. 2020;73(2):451–453. doi: 10.1016/j.jhep.2020.03.044.

43. Sonzogni A., Previtali G., Seghezzi M., Grazia Alessio M., Gianatti A., Licini L. et al. Liver histopathology in severe COVID 19 respiratory failure is suggestive of vascular alterations. Liver Int. 2020;40(9):2110–2116. doi: 10.1111/liv.14601.

44. Merad M., Martin J.C. Pathological inflammation in patients with COVID- 19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020;20(6):355–362. doi: 10.1038/s41577-020-0331-4.

45. Manne B.K., Denorme F., Middleton E.A., Portier I., Rowley J.W., Stubben C. et al. Platelet gene expression and function in patients with COVID-19. Blood. 2020;136(11):1317–1329. doi: 10.1182/blood.2020007214.

46. Tang N., Bai H., Chen X., Gong J., Li D., Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094–1099. doi: 10.1111/jth.14817.

47. Vinken M. COVID-19 and the liver: an adverse outcome pathway perspective. Toxicology. 2021;455:152765. doi: 10.1016/j.tox.2021.152765.

48. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan. China. JAMA. 2020;323(11):1061–1069. doi: 10.1001/jama.2020.1585.

49. Duarte-Neto A.N., Monteiro R.A.A., da Silva L.F.F., Malheiros D.M.A.C., de Oliveira E.P., Theodoro-Filho J. et al. Pulmonary and systemic involvement of COVID-19 assessed by ultrasound-guided minimally invasive autopsy. Histopathology. 2020;77(2):186–197. doi: 10.1111/his.14160.

50. Mancia G., Rea F., Ludergnani M., Apolone G., Corrao G. Renin-angiotensinaldosterone system blockers and the risk of COVID-19. N Engl J Med. 2020;382(25):2431–2440. doi: 10.1056/NEJMoa2006923.

51. Chen L., Li X.J., Chen M.Q., Feng Y., Xiong C.L. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res. 2020;116(6):1097– 1100. doi: 10.1093/cvr/cvaa078.

52. van der Poll T., van de Veerdonk F.L., Scicluna B.P., Netea M.G. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol. 2017;17:407–420. doi: 10.1038/nri.2017.36.

53. von Bruhl M.L., Stark K., Steinhart A., Chandraratne S., Konrad I., Lorenz M. et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819–835. doi: 10.1084/jem.20112322.

54. Zuo Y., Yalavarthi S., Shi H., Gockman K., Zuo M., Madison J.A. et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020;5(11):e138999. doi: 10.1172/jci.insight.138999.

55. Barnes B.J., Adrover J.M., Baxter-Stoltzfus A., Borczuk A., Cools-Lartigue J., Crawford J.M. et al. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J Exp Med. 2020;217(6):e20200652. doi: 10.1084/jem.20200652.

56. Yao X.H., Li T.Y., He Z.C., Ping Y.F., Liu H.W., Yu S.C. et al. A pathological report of three COVID‐19 cases by minimally invasive autopsies. Zhonghua Bing Li Xue Za Zhi. 2020;49(5):411–417. doi: 10.3760/cma.j.cn112151-20200312-00193.

57. Sun J., Aghemo A., Forner A., Valenti L. COVID‐19 and liver disease. Liver Int. 2020;40(6):1278–1281. doi: 10.1111/liv.14470.

58. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844–847. doi: 10.1111/jth.14768.

59. Carsana L., Sonzogni A., Nasr A., Rossi R.S., Pellegrinelli A., Zerbi P. et al. Pulmonary post‐mortem findings in a large series of COVID‐19 cases from Northern Italy. Lancet Infect Dis, accepted for publication. Lancet Infect Dis. 2020;20(10):1135–1140. doi: 10.1016/S1473-3099(20)30434-5.

60. Saviano A., Wrensch F., Ghany M.G., Baumert T.F. Liver disease and COVID-19: from Pathogenesis to Clinical Care. Hepatology. 2020. doi: 10.1002/hep.31684. 61. Sempoux C., Bioulac‐Sage P. Vascular liver lesions: contemporary views on long‐recognized entities. Virchows Arch. 2018;473(1):1–2. doi: 10.1007/s00428-018-2328-y.

61. Guido M., Pizzi M., Sacerdoti D., Giacomelli L., Rugge M., Bolognesi M. Beyond scoring: a modern histological assessment of chronic hepatitis should include tissue angiogenesis. Gut. 2014;63(8):1366–1367. doi: 10.1136/gutjnl-2013-306658.

62. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi: 10.1016/S0140-6736(20)30566-3.


Для цитирования:


Плотникова Е.Ю., Баранова Е.Н., Карягина М.С., Воросова О.А., Краснов К.А. Случай тяжелого поражения печени при COVID-19. Медицинский Совет. 2021;(5):84-91. https://doi.org/10.21518/2079-701X-2021-5-84-91

For citation:


Plotnikova E.Yu., Baranova E.N., Karyagina M.S., Vorosova O.A., Krasnov K.A. Case of severe liver damage in COVID-19. Meditsinskiy sovet = Medical Council. 2021;(5):84-91. (In Russ.) https://doi.org/10.21518/2079-701X-2021-5-84-91

Просмотров: 128


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)