Comparative efficacy and safety of chimeric and recombinant anti-TNF-α mAbs
https://doi.org/10.21518/2079-701X-2021-5-124-133
Abstract
TNF-α has been known since 1985. It is a multifunctional proinflammatory cytokine, synthesized mainly by monocytes and macrophages. Since its discovery, many studies have been conducted that have proven that it provides homeostatic function and regulates many biological processes in the body. Violation of its regulation in humans is associated with the development of many autoimmune diseases. The intensive studies that led to the understanding of its polyfunctionality and its role in the immunopathogenesis of a number of diseases served as the basis for the development of anti-cytokine therapy with monoclonal antibodies. In 1975, a technique for producing such antibodies was developed. The first antibodies against TNF-α obtained were chimeric, consisting of 30% mouse protein. Because of this feature, drugs based on chimeric antibodies had immunogenicity, which was manifested in the formation of antibodies to the drug, which led to a decrease in their effectiveness. To reduce immunogenicity, scientists in 1990 created the first fully human monoclonal antibody based on a technology called phage display. This is how adalimumab was born, the first fully human multi-clonal antibody to TNF-α. Humira® (adalimumab) is currently considered a widely studied drug from the group of TNF-α inhibitors, with a good safety and efficacy profile. The article presents current data that demonstrate that the drug significantly improves the course of diseases such as rheumatoid and psoriatic arthritis, and will allow for long-term remission in Crohn’s disease.
About the Authors
V. N. DrozdovRussian Federation
Dr. Sci. (Med.), Professor of the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases,
8, Bldg. 2, Trubetskaya St., Moscow, 119991
E. V. Shikh
Russian Federation
Dr. Sci. (Med.), Chair of the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases,
8, Bldg. 2, Trubetskaya St., Moscow, 119991
A. A. Astapovskiy
Russian Federation
Graduate Student of the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases,
8, Bldg. 2, Trubetskaya St., Moscow, 119991
S. Yu. Serebrova
Russian Federation
Dr. Sci. (Med.), Chief Researcher, 8, Bldg. 2, Petrovsky Boulevard, Moscow, 127051;
Professor of the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, 8, Bldg. 2, Trubetskaya St., Moscow, 119991
A. K. Starodubtsev
Russian Federation
Dr. Sci. (Med.), Professor of the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases,
8, Bldg. 2, Trubetskaya St., Moscow, 119991
References
1. Carswell E.A., Old L.J., Kassel R.L., Green S., Fiore N., Williamson B. An Endotoxin-Induced Serum Factor That Causes Necrosis of Tumors. Proc Natl Acad Sci U S A. 1975;72(9):3666–3670. doi: 10.1073/pnas.72.9.3666.
2. Beutler B., Greenwald D., Hulmes J.D., Chang M., Pan Y.C. et al. Identity of Tumour Necrosis Factor and the Macrophage-Secreted Factor Cachectin. Nature. 1985;316(6028):552–554. doi: 10.1038/316552a0.
3. Bradley J.R. TNF-mediated inflammatory disease. J Pathol. 2008;214(2): 149–160. doi: 10.1002/path.2287.
4. Pennica D., Hayflick J.S., Bringman T.S., Palladino M.A., Goeddel D.V. Cloning and Expression in Escherichia coli of the cDNA for Murine Tumor Necrosis Factor. Proc Natl Acad Sci U S A. 1985;82(18):6060–6064. doi: 10.1073/pnas.82.18.6060.
5. Kany S., Vollrath J.T., Relja B. Cytokines in Inflammatory Disease. Int J Mol Sci. 2019;20(23):6008. doi: 10.3390/ijms20236008.
6. Urschel K., Cicha I. TNF-α in the Cardiovascular System: From Physiology to Therapy. Int J Interferon Cytokine Mediat Res. 2015;7:9–25. doi: 10.2147/IJICMR.S64894.
7. Bazzoni F., Beutler B. The Tumor Necrosis Factor Ligand and Receptor Families. N Engl J Med. 1996;334(26):1717–1725. doi: 10.1056/NEJM199606273342607.
8. Horiuchi K., Kimura T., Miyamoto T., Takaishi H., Okada Y., Toyama Y., Blobel C.P. Cutting Edge: TNF-Alpha-Converting Enzyme (TACE/ADAM17) Inactivation in Mouse Myeloid Cells Prevents Lethality from Endotoxin Shock. J Immunol. 2007;179(5):2686–2689. doi: 10.4049/jimmunol.179.5.2686.
9. Kalliolias G.D., Ivashkiv L.B. TNF Biology, Pathogenic Mechanisms and Emerging Therapeutic Strategies. Nat Rev Rheumatol. 2016;12(1):49–62. doi: 10.1038/nrrheum.2015.169.
10. Baranovskiy A.Yu., Marchenko N.V., Mitelglik U.A., Raykhelson K.L. The Role of Alpha Tumor Necrosis Factor in the Development of Autoimmune Liver Disease: Recurring Problem. Prakticheskaya meditsina. Gastroenterologiya = Practical Medicine. Gastroenterology. 2014;(1):15–19. (In Russ.) Available at: https://elibrary.ru/item.asp?id=21279183.
11. Chappell W.H., Abrams S.L., Lertpiriyapong K., Fitzgerald T.L., Martelli A.M., Cocco L. et al. Novel Roles of Androgen Receptor, Epidermal Growth Factor Receptor, TP53, Regulatory RNAs, NF-kappa-B, Chromosomal Translocations, Neutrophil Associated Gelatinase, and Matrix Metalloproteinase-9 in Prostate Cancer and Prostate Cancer Stem Cells. Adv Biol Regul. 2016;60:64–87. doi: 10.1016/j.jbior.2015.10.001.
12. Shin J.S., Hong Y., Lee H.H., Ryu B., Cho Y.W., Kim N.J. et al. Fulgidic Acid Isolated from the Rhizomes of Cyperus rotundus Suppresses LPS-Induced iNOS, COX-2, TNF-α, and IL-6 Expression by AP-1 Inactivation in RAW264.7 Macrophages. Biol Pharm Bull. 2015;38(7):1081–1086. doi: 10.1248/bpb.b15-00186.
13. Park Y.H., Jeong M.S., Jang S.B. Death Domain Complex of the TNFR-1, TRADD, and RIP1 Proteins for Death-Inducing Signaling. Biochem Biophys Res Commun. 2014;443(4):1155–1161. doi: 10.1016/j.bbrc.2013.12.068.
14. Schneider-Brachert W., Tchikov V., Neumeyer J., Jakob M., Winoto-Morbach S., Held-Feindt J. et al. Compartmentalization of TNF Receptor 1 Signaling: Internalized TNF Receptosomes as Death Signaling Vesicles. Immunity. 2004;21(3):415–428. doi: 10.1016/j.immuni.2004.08.017.
15. Aggarwal B.B. Signalling Pathways of the TNF Superfamily: A DoubleEdged Sword. Nat Rev Immunol. 2003;3(9):745–756. doi: 10.1038/nri1184.
16. Wong G.H., Goeddel D.V. Tumour Necrosis Factors Alpha and Beta Inhibit Virus Replication and Synergize with Interferons. Nature. 1986;323(6091):819–822. doi: 10.1038/323819a0.
17. Van Amersfoort E.S., Van Berkel T.J., Kuiper J. Receptors, Mediators, and Mechanisms Involved in Bacterial Sepsis and Septic Shock. Clin Microbiol Rev. 2003;16(3):379–414. doi: 10.1128/CMR.16.3.379-414.2003.
18. Kollias G., Douni E., Kassiotis G., Kontoyiannis D. On the Role of Tumor Necrosis Factor and Receptors in Models of Multiorgan Failure, Rheumatoid Arthritis, Multiple Sclerosis and Inflammatory Bowel Disease. Immunol Rev. 1999;169:175–194. doi: 10.1111/j.1600-065x.1999.tb01315.x.
19. Zhu M., Lei L., Zhu Z., Li Q., Guo D., Xu J. et al. Excess TNF-α in the Blood Activates Monocytes with the Potential to Directly form Cholesteryl EsterLaden Cells. Acta Biochim Biophys Sin (Shanghai). 2015;47(11):899–907. doi: 10.1093/abbs/gmv092.
20. Bozkurt B., Kribbs S.B., Clubb F.J. Jr, Michael L.H., Didenko V.V., Hornsby P.J. et al. Pathophysiologically Relevant Concentrations of Tumor Necrosis Factor-Alpha Promote Progressive Left Ventricular Dysfunction and Remodeling in Rats. Circulation. 1998;97(14):1382–1391. doi: 10.1161/01.cir.97.14.1382.
21. Balkwill F. Tumour Necrosis Factor and Cancer. Nat Rev Cancer. 2009;9(5):361–371. doi: 10.1038/nrc2628.
22. Aggarwal B.B., Shishodia S., Sandur S.K., Pandey M.K., Sethi G. Inflammation and Cancer: How Hot Is the link? Biochem Pharmacol. 2006;72(11):1605–1621. doi: 10.1016/j.bcp.2006.06.029.
23. Sayed B.A., Christy A.L., Walker M.E., Brown M.A. Meningeal Mast Cells Affect Early T Cell Central Nervous System Infiltration and BloodBrain Barrier Integrity Through TNF: A Role for Neutrophil Recruitment? J Immunol. 2010;184(12):6891–6900. doi: 10.4049/jimmunol.1000126.
24. Swardfager W., Lanctôt K., Rothenburg L., Wong A., Cappell J., Herrmann N. A Meta-Analysis of Cytokines in Alzheimer’s Disease. Biol Psychiatry. 2010;68(10):930–941. doi: 10.1016/j.biopsych.2010.06.012.
25. Nagatsu T., Sawada M. Inflammatory Process in Parkinson’s Disease: Role for Cytokines. Curr Pharm Des. 2005;11(8):999–1016. doi: 10.2174/1381612053381620.
26. Kips J.C., Tavernier J.H., Joos G.F., Peleman R.A., Pauwels R.A. The Potential Role of Tumour Necrosis Factor Alpha in Asthma. Clin Exp Allergy. 1993;23(4):247–250. doi: 10.1111/j.1365-2222.1993.tb00317.x.
27. Hotamisligil G.S., Shargill N.S., Spiegelman B.M. Adipose Expression of Tumor Necrosis Factor-Alpha: Direct Role in Obesity-Linked Insulin Resistance. Science. 1993;259(5091):87–91. doi: 10.1126/science.7678183.
28. Köhler G., Milstein C. Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity. Nature. 1975;256(5517):495–497. doi: 10.1038/256495a0.
29. Little M., Kipriyanov S.M., Le Gall F., Moldenhauer G. Of Mice and Men: Hybridoma and Recombinant Antibodies. Immunol Today. 2000;21(8):364– 370. doi: 10.1016/s0167-5699(00)01668-6.
30. Li F., Vijayasankaran N., Shen A.Y., Kiss R., Amanullah A. Cell Culture Processes for Monoclonal Antibody Production. MAbs. 2010;2(5):466–479. doi: 10.4161/mabs.2.5.12720.
31. Béné M.C. The Wonderful Story of Monoclonal Antibodies. Int J Lab Hematol. 2019;41(1 Suppl.):8–14. doi: 10.1111/ijlh.13006.
32. National Research Council (US) Committee on Methods of Producing Monoclonal Antibodies. Monoclonal Antibody Production. Washington (DC): National Academies Press (US); 1999. 74 p. doi: 10.17226/9450.
33. Malottki K., Barton P., Tsourapas A., Uthman A.O., Liu Z., Routh K. et al. Adalimumab, Etanercept, Infliximab, Rituximab and Abatacept for the Treatment of Rheumatoid Arthritis after the Failure of a Tumour Necrosis Factor Inhibitor: A Systematic Review and Economic Evaluation. Health Technol Assess. 2011;15(14):1–278. doi: 10.3310/hta15140.
34. Jones P.T., Dear P.H., Foote J., Neuberger M.S., Winter G. Replacing the Complementarity-Determining Regions in a Human Antibody with Those from a Mouse. Nature. 1986;321(6069):522–525. doi: 10.1038/321522a0.
35. Goel N., Stephens S. Certolizumab Pegol. MAbs. 2010;2(2):137–147. doi: 10.4161/mabs.2.2.11271.
36. McCafferty J., Griffiths A.D., Winter G., Chiswell D.J. Phage Antibodies: Filamentous Phage Displaying Antibody Variable Domains. Nature. 1990;348(6301):552–554. doi: 10.1038/348552a0.
37. Winter G., Griffiths A.D., Hawkins R.E., Hoogenboom H.R. Making Antibodies by Phage Display Technology. Annu Rev Immunol. 1994;12:433– 455. doi: 10.1146/annurev.iy.12.040194.002245.
38. Lukina G.V., Sigidin Ya.A. Safety of Treatment with Adalimumab. Nauchnoprakticheskaya revmatologiya = Rheumatology Science and Practice. 2008;46(2):60–63. (In Russ.) doi: 10.14412/1995-4484-2008-433.
39. Burmester G.R., Panaccione R., Gordon K.B., McIlraith M.J., Lacerda A.P. Adalimumab: Long-Term Safety in 23 458 Patients from Global Clinical Trials in Rheumatoid Arthritis, Juvenile Idiopathic Arthritis, Ankylosing Spondylitis, Psoriatic Arthritis, Psoriasis and Crohn’s Disease. Ann Rheum Dis. 2013;72(4):517–524. doi: 10.1136/annrheumdis-2011-201244.
40. Jaffe G.J., Dick A.D., Brézin A.P., Nguyen Q.D., Thorne J.E., Kestelyn P. et al. Adalimumab in Patients with Active Noninfectious Uveitis. N Engl J Med. 2016;375(10):932–943. doi: 10.1056/NEJMoa1509852.
41. Ducancel F., Muller B.H. Molecular Engineering of Antibodies for Therapeutic and Diagnostic Purposes. MAbs. 2012;4(4):445–457. doi: 10.4161/mabs.20776.
42. Harding F.A., Stickler M.M., Razo J., DuBridge R.B. The Immunogenicity of Humanized and Fully Human Antibodies: Residual Immunogenicity Resides in the CDR Regions. MAbs. 2010;2(3):256–265. doi: 10.4161/mabs.2.3.11641.
43. Hansel T.T., Kropshofer H., Singer T., Mitchell J.A., George A.J. The Safety and Side Effects of Monoclonal Antibodies. Nat Rev Drug Discov. 2010;9(4):325–338. doi: 10.1038/nrd3003.
44. Waldmann H. Human Monoclonal Antibodies: The Benefits of Humanization. Methods Mol Biol. 2019;1904:1–10. doi: 10.1007/978-1-4939-8958-4_1.
45. Avdeeva Z.I., Soldatov A.A., Alpatova N.A., Medunitsyn N.V., Bondarev V.P., Mironov A.N. et al. Preparations of Next Generation Monoclonal Antibodies (Issues and Prospects). BIOpreparaty. Profilaktika, diagnostika, lecheniye = BIOpreparations. Prevention, Diagnosis, Treatment. 2015;(1):21– 35. (In Russ.) Available at: https://www.biopreparations.ru/jour/article/view/4?locale=ru_RU#.
46. Vena G.A., Cassano N. Drug Focus: Adalimumab in the Treatment of Moderate to Severe Psoriasis. Biologics. 2007;1(2):93–103. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2721299/.
47. Scheinfeld N. Adalimumab: A Review of Side Effects. Expert Opin Drug Saf. 2005;4(4):637–641. doi: 10.1517/14740338.4.4.637.
48. Ecker D.M., Jones S.D., Levine H.L. The Therapeutic Monoclonal Antibody Market. MAbs. 2015;7(1):9–14. doi: 10.4161/19420862.2015.989042.
49. Möller A., Emling F., Blohm D., Schlick E., Schollmeier K. Monoclonal Antibodies to Human Tumor Necrosis Factor Alpha: in vitro and in vivo Application. Cytokine. 1990;2(3):162–169. doi: 10.1016/1043-4666(90)90011-h.
50. Keffer J., Probert L., Cazlaris H., Georgopoulos S., Kaslaris E., Kioussis D., Kollias G. Transgenic Mice Expressing Human Tumour Necrosis Factor: A Predictive Genetic Model of Arthritis. EMBO J. 1991;10(13):4025–4031. doi: 10.1002/j.1460-2075.1991.tb04978.x.
51. National Guideline Centre (UK). Rheumatoid arthritis in adults: diagnosis and management. London: National Institute for Health and Care Excellence (UK); 2018. Available at: https://www.ncbi.nlm.nih.gov/books/NBK519103/.
52. Anderson J., Caplan L., Yazdany J., Robbins M.L., Neogi T., Michaud K. et al. Rheumatoid Arthritis Disease Activity Measures: American College of Rheumatology Recommendations for Use in Clinical Practice. Arthritis Care Res (Hoboken). 2012;64(5):640–647. doi: 10.1002/acr.21649.
53. Folomeeva O.M., Galushko E.A., Erdes S.F. Prevalence of Rheumatic Diseases in Adult Populations of Russian Federation and USA. Nauchnoprakticheskaya revmatologiya = Rheumatology Science and Practice. 2008;46(4):4–13. (In Russ.) doi: 10.14412/1995-4484-2008-529.
54. Weinblatt M.E., Keystone E.C., Furst D.E., Moreland L.W., Weisman M.H., Birbara C.A. et al. Adalimumab, A Fully Human Anti-Tumor Necrosis Factor Alpha Monoclonal Antibody, for the Treatment of Rheumatoid Arthritis in Patients Taking Concomitant Methotrexate: the ARMADA Trial. Arthritis Rheum. 2003;48(1):35–45. doi: 10.1002/art.10697.
55. Furst D.E., Schiff M.H., Fleischmann R.M., Strand V., Birbara C.A., Compagnone D. et al. Adalimumab, A Fully Human Anti Tumor Necrosis Factor-Alpha Monoclonal Antibody, and Concomitant Standard Antirheumatic Therapy for the Treatment of Rheumatoid Arthritis: Results of STAR (Safety Trial of Adalimumab in Rheumatoid Arthritis). J Rheumatol. 2003;30(12):2563–2571. Available at: https://www.jrheum.org/content/30/12/2563.long.
56. Korotaev T.V., Korsakova Yu.I. Psoriatic Arthritis: Classification, Clinical Presentation, Diagnosis, Treatment. Nauchno-prakticheskaya revmatologiya = Rheumatology Science and Practice. 2018;56(1):60–69. (In Russ.) doi: 10.14412/1995-4484-2018-60-69.
57. Mease P.J. Psoriatic Arthritis: Update on Pathophysiology, Assessment and Management. Ann Rheum Dis. 2011;70(1 Suppl.):i77–i84. doi: 10.1136/ard.2010.140582.
58. Mease P.J., Gladman D.D., Ritchlin C.T., Ruderman E.M., Steinfeld S.D., Choy E.H. et al. Adalimumab for the Treatment of Patients with Moderately to Severely Active Psoriatic Arthritis: Results of a Double-Blind, Randomized, Placebo-Controlled Trial. Arthritis Rheum. 2005;52(10):3279– 3289. doi: 10.1002/art.21306.
59. Genovese M.C., Mease P.J., Thomson G.T., Kivitz A.J., Perdok R.J., Weinberg M.A. et al. Safety and Efficacy of Adalimumab in Treatment of Patients with Psoriatic Arthritis Who Had Failed Disease Modifying Antirheumatic Drug Therapy. J Rheumatol. 2007;34(5):1040–1050. Available at: https://www.jrheum.org/content/34/5/1040.long.
60. Lichtenstein G.R., Loftus E.V., Isaacs K.L., Regueiro M.D., Gerson L.B., Sands B.E. ACG Clinical Guideline: Management of Crohn’s Disease in Adults. Am J Gastroenterol. 2018;113(4):481–517. doi: 10.1038/ajg.2018.27.
61. Hanauer S.B., Sandborn W.J., Rutgeerts P., Fedorak R.N., Lukas M., MacIntosh D. et al. Human Anti-Tumor Necrosis Factor Monoclonal Antibody (Adalimumab) in Crohn’s Disease: the CLASSIC-I Trial. Gastroenterology. 2006;130(2):323–333; quiz 591. doi: 10.1053/j.gastro.2005.11.030.
62. Colombel J.F., Sandborn W.J., Rutgeerts P., Enns R., Hanauer S.B., Panaccione R. et al. Adalimumab for Maintenance of Clinical Response and Remission in Patients with Crohn’s Disease: the CHARM Trial. Gastroenterology. 2007;132(1):52–65. doi: 10.1053/j.gastro.2006.11.041.
63. Sandborn W.J., Rutgeerts P., Enns R., Hanauer S.B., Colombel J.F., Panaccione R. et al. Adalimumab Induction Therapy for Crohn Disease Previously Treated with Infliximab: A Randomized Trial. Ann Intern Med. 2007;146(12):829–838. doi: 10.7326/0003-4819-146-12-200706190-00159.
Review
For citations:
Drozdov VN, Shikh EV, Astapovskiy AA, Serebrova SY, Starodubtsev AK. Comparative efficacy and safety of chimeric and recombinant anti-TNF-α mAbs. Meditsinskiy sovet = Medical Council. 2021;(5):124-133. (In Russ.) https://doi.org/10.21518/2079-701X-2021-5-124-133