Preview

Медицинский Совет

Расширенный поиск

Ограничения и возможности лекарственного лечения в условиях пандемии COVID-19

https://doi.org/10.21518/2079-701X-2021-9-108-113

Полный текст:

Аннотация

Пандемия COVID-19 повлияла на все сферы медицинской деятельности и поставила перед клиницистами ряд серьезных проблем. Одним из  важных вопросов для врачей-онкологов является понимание особенностей протекания инфекции SARS- CoV-2 у больных со злокачественными новообразованиями. Согласно большинству источников, онкологические пациенты более уязвимы для COVID-19 по сравнению с общей популяцией. У пациентов, получающих лечение по поводу злокачественнх новообразований, заболеваемость составляет 1–4%. Наиболее высок риск развития COVID-19 у пациентов с гематологическими неоплазиями и раком легких, у данных групп пациентов также отмечается более тяжелое течение заболевания. В настоящей статье освещено влияние опухолевого процесса на иммунную систему, разобран патогенез новой коронавирусной инфекции с точки зрения воздействия на иммунитет. Также в обзоре проанализированы накопленные на сегодняшний день данные о влиянии различных типов лечения онкологических заболеваний (химиотерапии, таргетной, лучевой и иммунотерапии) на тяжесть течения инфекции COVID-19. Данные о влиянии химиотерапии на тяжесть течения и смертность от COVID-19 неоднозначны. Тогда как в одних исследованиях были получены результаты, свидетельствующие о том, что проведение химиотерапии не влияет на прогноз заболевания новой коронавирусной инфекцией, в других была выявлена значимая взаимосвязь этих двух событий. С другой стороны, анализ влияния противоопухолевого лечения показал, что таргетная, лучевая и иммунотерапия, вероятнее всего, не утяжеляют течение COVID-19 и не способствуют развитию осложнений. Однако необходимо подчеркнуть, что имеющихся на сегодняшний день данных недостаточно для однозначных выводов.

Об авторах

Р. В. Орлова
Санкт-Петербургский государственный университет; Городской клинический онкологический диспансер
Россия

Орлова Рашида Вахидовна, доктор медицинских наук, профессор, онколог, заведующая кафедрой онкологии, Санкт-Петербургский государственный университет; главный специалист по клинической окнологии, Городской клинический онкологический диспансер

199034, Санкт-Петербург, Университетская набережная, д. 7–9,

198255, Санкт-Петербург, Проспект Ветеранов, д. 56



Е. А. Каледина
Санкт-Петербургский государственный университет
Россия

Каледина Екатерина Александровна, ординатор кафедры онкологии

199034, Санкт-Петербург, Университетская набережная, д. 7–9



А. М. Малкова
Санкт-Петербургский государственный университет
Россия

Малкова Анна Михайловна, аспирант кафедры онкологии, младший научный сотрудник лаборатории мозаики аутоиммунитета

199034, Санкт-Петербург, Университетская набережная, д. 7–9



Н. В. Жукова
Санкт-Петербургский государственный университет; Городской клинический онкологический диспансер
Россия

Жукова Наталья Владимировна, кандидат медицинских наук, доцент кафедры онкологии, онколог, Санкт-Петербургский государственный университет; заведующая химиотерапевтическим отделением (противоопухолевой лекарственной терапии) №13, Городской клинический онкологический диспансер

199034, Санкт-Петербург, Университетская набережная, д. 7–9,

198255, Санкт-Петербург, Проспект Ветеранов, д. 56



П. А. Наймушина
Санкт-Петербургский государственный университет
Россия

Наймушина Полина Андреевна, студент 5-го курса медицинского факультета

199034, Санкт-Петербург, Университетская набережная, д. 7–9



Н. П. Беляк
Санкт-Петербургский государственный университет; Городской клинический онкологический диспансер
Россия

Беляк Наталья Петровна, кандидат медицинских наук, ассистент кафедры онкологии, онколог, Санкт-Петербургский государственный университет; заведующая отделением противоопухолевой лекарственной терапии №10, Городской клинический онкологический диспансер

199034, Санкт-Петербург, Университетская набережная, д. 7–9,

198255, Санкт-Петербург, Проспект Ветеранов, д. 56



А. Е. Жукова
Городской клинический онкологический диспансер
Россия

Жукова Анна Егоровна, врач-онколог отделения противоопухолевой лекарственной терапии №13

198255, Санкт-Петербург, Проспект Ветеранов, д. 56



А. С. Сарматова
Санкт-Петербургский государственный университет; Городской клинический онкологический диспансер
Россия

Сарматова Александра Сергеевна, онколог, аспирант кафедры онкологии, Санкт-Петербургский государственный университет; врач-онколог отделения противоопухолевой лекарственной терапии №13, Городской клинический онкологический диспансер

199034, Санкт-Петербург, Университетская набережная, д. 7–9,

198255, Санкт-Петербург, Проспект Ветеранов, д. 56



Н. А. Карасева
Городской клинический онкологический диспансер
Россия

Карасева Нина Алексеевна, кандидат медицинских наук, онколог отделения противоопухолевой лекарственной терапии №13

198255, Санкт-Петербург, Проспект Ветеранов, д. 56



И. В. Егорова
Городской клинический онкологический диспансер
Россия

Егорова Инна Валерьевна, онколог отделения противоопухолевой лекарственной терапии №13

198255, Санкт-Петербург, Проспект Ветеранов, д. 56



К. Н. Тесленко
Городской клинический онкологический диспансер
Россия

Тесленко Ксения Николаевна, онколог отделения противоопухолевой лекарственной терапии №13

198255, Санкт-Петербург, Проспект Ветеранов, д. 56



А. В. Тарасов
Санкт-Петербургский государственный университет; Городской клинический онкологический диспансер
Россия

Тарасов Артем Владиславович, онколог, аспирант кафедры онкологии, Санкт-Петербургский государственный университет; врач-онколог отделения противоопухолевой лекарственной терапии №13, Городской клинический онкологический диспансер

199034, Санкт-Петербург, Университетская набережная, д. 7–9,

198255, Санкт-Петербург, Проспект Ветеранов, д. 56



Список литературы

1. Du Toit A. Outbreak of a Novel Coronavirus. Nat Rev Microbiol. 2020;18:123. https://doi.org/10.1038/s41579-020-0332-0.

2. Zhou P., Yang X., Wang X., Hu B., Zhang L., Zhang W. et al. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat origin. Nature. 2020;579:270–273. https://doi.org/10.1038/s41586-020-2012-7.

3. Bertuzzi A.F., Marrari A., Gennaro N., Cariboni U., Ciccarelli M., Giordano L. et al. Low Incidence of SARS-CoV-2 in Patients with Solid Tumours on Active Treatment: An Observational Study at a Tertiary Cancer Centre in Lombardy, Italy. Cancers (Basel). 2020;12(9):2352. https://doi.org/10.3390/cancers12092352.

4. Wang Q., Berger N.A., Xu R. Analyses of Risk, Racial Disparity, and Outcomes Among US Patients With Cancer and COVID-19 Infection. JAMA Oncol. 2021;7(2):220–227. https://doi.org/10.1001/jamaoncol.2020.6178.

5. Liang W., Guan W., Chen R., Wang W., Li J., Xu K. et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol. 2020;21(3):335–337. https://doi.org/10.1016/S1470-2045(20)30096-6.

6. Giannakoulis V.G., Papoutsi E., Siempos I.I. Effect of Cancer on Clinical Outcomes of Patients With COVID-19: A Meta-Analysis of Patient Data. JCO Glob Oncol. 2020;6:799–808. https://doi.org/10.1200/GO.20.00225.

7. Williamson E.J., Walker A.J., Bhaskaran K., Bacon S., Bates C., Morton C.E. et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584:430–436. https://doi.org/10.1038/s41586-020-2521-4.

8. Docherty A.B., Harrison E.M., Green C.A., Hardwick H.E., Pius R., Norman L. et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ. 2020;369:m1985. https://doi.org/10.1136/bmj.m1985.

9. Kuderer N.M., Choueiri T.K., Shah D.P., Shyr Y., Rubinstein S.M., Rivera D.R. et al. COVID-19 and Cancer Consortium. Clinical impact of COVID-19 on patients with cancer (CCC19): a cohort study. Lancet. 2020;395(10241):1907– 1918. https://doi.org/10.1016/S0140-6736(20)31187-9.

10. Mehta V., Goel S., Kabarriti R., Cole D., Goldfinger M., Acuna-Villaorduna A. et al. Case Fatality Rate of Cancer Patients with COVID-19 in a New York Hospital System. Cancer Discov. 2020;10(7):935–941. https://doi.org/10.1158/2159-8290.CD-20-0516.

11. Lunski M.J., Burton J., Tawagi K., Maslov D., Simenson V., Barr D. et al. Multivariate mortality analyses in COVID-19: Comparing patients with cancer and patients without cancer in Louisiana. Cancer. 2021;127(2):266– 274. https://doi.org/10.1002/cncr.33243.

12. Derosa L., Melenotte C., Griscelli F., Gachot B., Marabelle A., Kroemer G., Zitvogel L. The immuno-oncological challenge of COVID-19. Nat Cancer. 2020;1:946–964. Available at: https://www.nature.com/articles/s43018-020-00122-3?error=cookies_not_supported&code=66955eff-548b-4bb7-8885-e78f30bb5078.

13. Murdoch C., Muthana M., Coffelt S.B., Lewis C.E. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008;8:618– 631. https://doi.org/10.1038/nrc2444.

14. Hagemann T., Lawrence T., McNeish I., Charles K.A., Kulbe H., Thompson R.G. et al. “Re-educating” tumor-associated macrophages by targeting NF κB. J Exp Med. 2008;205(6):1261–1268. https://doi.org/10.1084/jem.20080108.

15. Oh H., Grinberg-Bleyer Y., Liao W., Maloney D., Wang P., Wu Z., Ghosh S. An NF κB transcription-factor-dependent lineage-specific transcriptional program promotes regulatory T cell identity and function. Immunity. 2017;47(3):450–465. https://doi.org/10.1016/j.immuni.2017.08.010.

16. Dai M., Liu D., Liu M., Zhou F., Li G., Chen Z. Patients with cancer appear more vulnerable to SARS-COV-2: a multi-center study during the COVID-19 outbreak. Cancer Discov. 2020;10(6);783–791. https://doi.org/10.1158/2159-8290.CD-20-0422.

17. Siu K.L., Chan C.P., Kok K.H., Chiu-Yat Woo P., Jin D.Y. Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain. Cell Mol Immunol. 2014;11:141–149. https://doi.org/10.1038/cmi.2013.61.

18. Versteeg G.A., Bredenbeek P.J., van den Worm S.H., Spaan W.J. Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition. Virology. 2007;361(1):18–26. https://doi.org/10.1016/j.virol.2007.01.020.

19. Sun L., Xing Y., Chen X., Zheng Y., Yang Y., Nichols D.B. et al. Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling. PLoS One. 2012;7(2):e30802. https://doi.org/10.1371/journal.pone.0030802.

20. Narayanan K., Huang C., Lokugamage K., Kamitani W., Ikegami T., Tseng C.T.K., Makino S. Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J Virol. 2008;82(9):4471–4479. https://doi.org/10.1128/JVI.02472-07.

21. Frieman M., Ratia K., Johnston R.E., Mesecar A.D., Baric R.S. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol. 2009;83(13):6689–6705. https://doi.org/10.1128/JVI.02220-08.

22. Qin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Y. et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020;71(15):762–768. https://doi.org/10.1093/cid/ciaa248.

23. Xie J., Fan H.W., Li T.S., Qiu Z.F., Han Y. Dynamic changes of T lymphocyte subsets in the long-term follow-up of severe acute respiratory syndrome patients. Chinese Academy of Medical Science. 2006;28(2):253–255. Available at: https://pubmed.ncbi.nlm.nih.gov/16733915/.

24. Li T., Qiu Z., Zhang L., Han Y., He W., Liu Z. et al. Significant Changes of Peripheral T Lymphocyte Subsets in Patients with Severe Acute Respiratory Syndrome. The Journal of Infectious Diseases. 2004;189(4):648– 651. https://doi.org/10.1086/381535.

25. Wong R.S., Wu A., To K.F., Lee N., Lam C.W., Wong C.K. et al. Haematological manifestations in patients with severe acute respiratory syndrome: retrospective analysis. BMJ. 2003;326:1358–1362. https://doi.org/10.1136/bmj.326.7403.1358.

26. Cui W., Fan Y., Wu W., Zhang F., Wang J.Y., Ni A.P. Expression of lymphocytes and lymphocyte subsets in patients with severe acute respiratory syndrome. Clinical infectious diseases. 2003;37(6):857–859. https://doi.org/10.1086/378587.

27. Zheng H.Y., Zhang M., Yang C.X., Zhang N., Wang X.C., Yang X.P. et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020;17:541–543. https://doi.org/10.1038/s41423-020-0401-3.

28. Gu J., Gong E., Zhang B., Zheng J., Gao Z., Zhong Y. et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415–424. https://doi.org/10.1084/jem.20050828.

29. Cheung C.Y., Poon L.L., Ng I.H., Luk W., Sia S.F., Wu M.H. et al. Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. J Virol. 2005;79(12):7819–7826. https://doi.org/10.1128/JVI.79.12.7819-7826.2005.

30. Yilla M., Harcourt B.H., Hickman C.J., McGrew M., Tamin A., Goldsmith C.S. et al. SARS-coronavirus replication in human peripheral monocytes/macrophages. Virus research. 2005;107(1):93–101. https://doi.org/10.1016/j.virusres.2004.09.004.

31. Tseng C.T.K., Perrone L.A., Zhu H., Makino S., Peters C.J. Severe acute respiratory syndrome and the innate immune responses: modulation of effector cell function without productive infection. J Immunol. 2005;174(12):7977–7985. https://doi.org/10.4049/jimmunol.174.12.7977.

32. Law H.K., Cheung C.Y., Ng H.Y., Sia S.F., Chan Y.O., Luk W. et al. Chemokine up-regulation in SARS-coronavirus–infected, monocyte-derived human dendritic cells. Blood. 2005;106(7):2366–2374. https://doi.org/10.1182/blood-2004-10-4166.

33. Tavakkoli M., Wilkins C.R., Mones J.V., Mauro M.J. A novel paradigm between leukocytosis, G-CSF secretion, neutrophil-to-lymphocyte ratio, myeloid-derived suppressor cells, and prognosis in non-small cell lung cancer. Front Oncol. 2019;9:295. https://doi.org/10.3389/fonc.2019.00295.

34. Clift A.K., Coupland C.A., Keogh R.H., Diaz-Ordaz K., Williamson E., Harrison E.M. et al. Living risk prediction algorithm (QCOVID) for risk of hospital admission and mortality from coronavirus 19 in adults: national derivation and validation cohort study. BMJ. 2020;371:m3731. https://doi.org/10.1136/bmj.m3731.

35. Yekedüz E., Utkan G., Ürün Y. A systematic review and meta-analysis: the effect of active cancer treatment on severity of COVID-19. Eur J Cancer. 2020;141:92–104. https://doi.org/10.1016/j.ejca.2020.09.028.

36. Lee L.Y., Cazier J.B., Starkey T., Turnbull C.D., Team U.C.C.M.P., Kerr R. et al. COVID-19 mortality in patients with cancer on chemotherapy or other anticancer treatments: a prospective cohort study. Lancet. 2020;395(10241): 1919–1926. https://doi.org/10.1016/S0140-6736(20)31173-9.

37. Tini G., Sarocchi M., Tocci G., Arboscello E., Ghigliotti G., Novo G. et al. Arterial hypertension in cancer: the elephant in the room. Int J Cardiol. 2019;281:133–139. https://doi.org/10.1016/j.ijcard.2019.01.082.

38. Jee J., Foote M., Lumish M., Stonestrom A., Wills B., Narendra V. et al. Chemotherapy and COVID-19 Outcomes in Patients With Cancer. J Clin Oncol. 2020;38(30):3538–3546. https://doi.org/10.1200/JCO.20.01307.

39. Pinato D., Zambelli A., Aguilar-Company J., Bower M., Sng C., Salazar R. et al. Clinical Portrait of the SARS-CoV-2 Epidemic in European Patients with Cancer. Cancer Discov. 2020;10(10):1465–1474. https://doi.org/10.1158/2159-8290.CD-20-0773.

40. Curigliano G., Banerjee S., Cervantes A., Garassino M., Garrido P., Girard N. et al. Managing cancer patients during the COVID-19 pandemic: an ESMO multidisciplinary expert consensus. Ann Oncol. 2020;31(10):1320–1335. https://doi.org/10.1016/j.annonc.2020.07.010.

41. Weisberg E., Parent A., Yang P., Sattler M., Liu Q., Liu Q. et al. Repurposing of Kinase Inhibitors for Treatment of COVID-19. Pharm Res. 2020;37:167. https://doi.org/10.1007/s11095-020-02851-7.

42. Luo J., Rizvi H., Egger J.V., Preeshagul I.R., Wolchok J.D., Hellmann M.D. Impact of PD-1 Blockade on Severity of COVID-19 in Patients with Lung Cancers. Cancer Discov. 2020;10(8):1121–1128. https://doi.org/10.1158/2159-8290.CD-20-0596.

43. Vardhana S.A., Wolchok J.D. The many faces of the anti-COVID immune response. J Exp Med. 2020;217(6):e20200678. https://doi.org/10.1084/jem.20200678.

44. Luo J., Rizvi H., Egger J.V., Preeshagul I.R., Wolchok J.D., Hellmann M.D. Impact of PD-1 Blockade on Severity of COVID-19 in Patients with Lung Cancers. Cancer Discov. 2020;10(8):1121–1128. https://doi.org/10.1158/2159-8290.CD-20-0596.

45. Garassino M.C., Whisenant J.G., Huang L.C., Trama A., Torri V., Agustoni F. et al. COVID-19 in patients with thoracic malignancies (TERAVOLT): first results of an international, registry-based, cohort study. Lancet Oncol. 2020;21(7):914–922. https://doi.org/10.1016/S1470-2045(20)30314-4.

46. Robilotti E.V., Babady N.E., Mead P.A., Rolling T., Perez-Johnston R., Bernardes M. et al. Determinants of COVID-19 disease severity in patients with cancer. Nat Med. 2020;26:1218–1223. https://doi.org/10.1038/s41591-020-0979-0.

47. Vordermark D. Shift in indications for radiotherapy during the COVID-19 pandemic? A review of organ-specific cancer management recommendations from multidisciplinary and surgical expert groups. Radiat Oncol. 2020;15:140. https://doi.org/10.1186/s13014-020-01579-3.

48. Joseph N., Choudhury A. Lymphocytopenia and Radiotherapy Treatment Volumes in the Time of COVID-19. Clin Oncol. 2020;32(7):420–422. https://doi.org/10.1016/j.clon.2020.04.011.

49. Wild A., Herman J., Dholakia A., Moningi S., Lu Y., Rosati L. et al. Lymphocyte-Sparing Effect of Stereotactic Body Radiation Therapy in Patients With Unresectable Pancreatic Cancer. Int J Radiat Oncol. 2016;94(3):571–579. https://doi.org/10.1016/j.ijrobp.2015.11.026.


Для цитирования:


Орлова Р.В., Каледина Е.А., Малкова А.М., Жукова Н.В., Наймушина П.А., Беляк Н.П., Жукова А.Е., Сарматова А.С., Карасева Н.А., Егорова И.В., Тесленко К.Н., Тарасов А.В. Ограничения и возможности лекарственного лечения в условиях пандемии COVID-19. Медицинский Совет. 2021;(9):108-113. https://doi.org/10.21518/2079-701X-2021-9-108-113

For citation:


Orlova R.V., Kaledina E.A., Malkova A.M., Zhukova N.V., Naymushina P.A., Beliak N.P., Jukova A.E., Sarmatova A.S., Karaseva N.A., Egorova I.V., Teslenko K.N., Tarasov A.V. Limitations and opportunities of cancer treatment in the COVID-19 pandemic. Meditsinskiy sovet = Medical Council. 2021;(9):108-113. (In Russ.) https://doi.org/10.21518/2079-701X-2021-9-108-113

Просмотров: 242


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)