Preview

Медицинский Совет

Расширенный поиск

Микробиота грудного молока (представление, источники, роль бактерий для ребенка и матери)

https://doi.org/10.21518/2079-701X-2022-16-1-27-35

Аннотация

Научные открытия последних лет демонстрируют определяющую роль микробиома человека для его здоровья. Формирование здоровой, функциональной микробиоты кишечника новорожденного требует физиологических условий, одним из которых является грудное вскармливание. О роли грудного молока как «прямого поставщика» живых микробов для формирования кишечной микробиоты новорожденного стало известно только в начале нового тысячелетия, ранее оно считалось стерильным. На сегодняшний день микробиоту грудного молока можно определить, как совокупность комменсальных взаимодействующих между собой микробов, представляющих сложную организованную экосистему, среди которых доминирующими являются роды Streptococcus и Staphylococcus. К часто встречающимся родам бактерий также относят Lactobacillus, Pseudomonas, Bifidobacterium, Corynebacterium, Enterococcus, Acinetobacter, Rothia, Cutibacterium, Veillonella и Bacteroides. В статье представлены две теории происхождения бактерий в грудном молоке (эндогенный путь транслокации бактерий и экзогенный), а также дано объяснение, почему обе они справедливы. Роль бактерий в молоке здоровой женщины в глобальном смысле рассматривается в контексте формирования кишечной микробиоты ребенка. Перечислены основные продуценты антибактериальных пептидов (бактериоцинов) в грудном молоке, эффективность иммунологической защиты рассмотрена на примере популяции бифидобактерий и бактероидов, преобладающих в кишечнике детей на грудном вскармливании. Однако для здоровья женщины микробиота грудного молока также немаловажна. Мы попытались объяснить, почему сегодня инфекционный лактационный мастит считают результатом дисбиоза в экосистеме молочной железы, что приводит к развитию воспалительного процесса, и почему Streptococcus thermophilus (TCI633) перспективен в борьбе со старением.

Об авторах

И. Н. Захарова
Российская медицинская академия непрерывного профессионального образования
Россия

 д.м.н., профессор, заведующая кафедрой педиатрии имени академика Г.Н. Сперанского 

125993, Россия, Москва, ул. Баррикадная, д. 2/1, стр. 1 



А. Е. Кучина
Российская медицинская академия непрерывного профессионального образования
Россия

аспирант кафедры педиатрии имени академика Г.Н.  Сперанского 

125993, Россия, Москва, ул. Баррикадная, д. 2/1, стр. 1 



Список литературы

1. Houghteling P.D., Walker W.A. Why is initial bacterial colonization of the intestine important to infants’ and children’s health? J Pediatr Gastroenterol Nutr. 2015;60(3):294–307. https://doi.org/10.1097/MPG.0000000000000597.

2. Coker M.O., Laue H.E., Hoen A.G., Hilliard M., Dade E., Li Z. et al. Infant Feeding Alters the Longitudinal Impact of Birth Mode on the Development of the Gut Microbiota in the First Year of Life. Front Microbiol. 2021;12:642197. https://doi.org/10.3389/fmicb.2021.642197.

3. Ferretti P., Pasolli E., Tett A., Asnicar F., Gorfer V., Fedi S. et al. Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome. Cell Host Microbe. 2018;24(1):133–145.e5. https://doi.org/10.1016/j.chom.2018.06.005.

4. Young V.B. the role of the microbiome in human health and disease: An introduction for clinicians. BMJ. 2017;356:j831. https://doi.org/10.1136/bmj.j831.

5. Бисярина В.П. Детские болезни с уходом за детьми и анатомо-физиологические особенности детского возраста. 3-е изд. М.: Медицина; 1984.

6. Студеникин М.Я. Книга о здоровье детей. 4-е изд. М.: Медицина; 1986. 240 с.

7. Fernández L., Pannaraj P.S., Rautava S., Rodríguez J.M. the Microbiota of the Human Mammary Ecosystem. Front Cell Infect Microbiol. 2020;10:586667. https://doi.org/10.3389/fcimb.2020.586667.

8. Heikkila M.P., Saris P.E.J. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol. 2003;95(3):471–478. https://doi.org/10.1046/j.1365-2672.2003.02002.x.

9. Martín R., Langa S., Reviriego C., Jimínez E., Marín M.L., Xaus J. et al. Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr. 2003;143(6):754–758. https://doi.org/10.1016/j.jpeds.2003.09.028.

10. Martín R., Jimínez E., Heilig H., Fernández L., Marín M.L., Zoetendal E.G., Rodríguez J.M. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol. 2009;75(4):965–969. https://doi.org/10.1128/AEM.02063-08.

11. Jost T., Lacroix C., Braegger C., Chassard C. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health. Nutr Rev. 2015;73(7):426–437. https://doi.org/10.1093/nutrit/nuu016.

12. Damaceno Q.S., Souza J.P., Nicoli J.R., Paula R.L., Assis G.B., Figueiredo H.C. et al. Evaluation of Potential Probiotics Isolated from Human Milk and Colostrum. Probiotics Antimicrob Proteins. 2017;9(4):371–379. https://doi.org/10.1007/s12602-017-9270-1.

13. McGuire A.L., Colgrove J., Whitney S.N., Diaz C.M., Bustillos D., Versalovic J. Ethical, legal, and social considerations in conducting the Human Microbiome Project. Genome Res. 2008;18(12):1861–1864. https://doi.org/10.1101/gr.081653.108.

14. Fitzstevens J.L., Smith K.C., Hagadorn J.I., Caimano M.J., Matson A.P., Brownell E.A. Systematic Review of the Human Milk Microbiota. Nutr Clin Pract. 2017;32(3):354–364. https://doi.org/10.1177/0884533616670150.

15. Zimmermann P., Curtis N. Breast milk microbiota: a review of the factors that influence composition. J Infect. 2020;81(1):17–47. https://doi.org/10.1016/j.jinf.2020.01.023.

16. Murphy K., Curley D., O’Callaghan T.F., O’Shea C.A., Dempsey E.M., O’Toole P.W. et al. the Composition of Human Milk and Infant Faecal Microbiota Over the First Three Months of Life: a Pilot Study. Sci Rep. 2017;7:40597. https://doi.org/10.1038/srep40597.

17. Li S.W., Watanabe K., Hsu C.C., Chao S.H., Yang Z.H., Lin Y.J. et al. Bacterial Composition and Diversity in Breast Milk Samples from Mothers Living in Taiwan and Mainland China. Front Microbiol. 2017;8:965. https://doi.org/10.3389/fmicb.2017.00965.

18. Sam Ma Z., Guan Q., Ye C., Zhang C., Foster J.A., Forney L.J. Network analysis suggests a potentially ‘evil’ alliance of opportunistic pathogens inhibited by a cooperative network in human milk bacterial communities. Sci Rep. 2015;5:8275. https://doi.org/10.1038/srep08275.

19. Stacy A., McNally L., Darch S.E., Brown S.P., Whiteley M. the biogeography of polymicrobial infection. Nat Rev Microbiol. 2016;14(2):93–105. https://doi.org/10.1038/nrmicro.2015.8.

20. Drago L., Toscano M., De Grandi R., Grossi E., Padovani E.M., Peroni D.G. Microbiota network and mathematic microbe mutualism in colostrum and mature milk collected in two different geographic areas: Italy versus Burundi. ISME J. 2017;11(4):875–884. https://doi.org/10.1038/ismej.2016.183.

21. Chassard C., de Wouters T., Lacroix C. Probiotics tailored to the infant: a window of opportunity. Curr Opin Biotechnol. 2014;26:141–147. https://doi.org/10.1016/j.copbio.2013.12.012.

22. Ramsay D.T., Kent J.C., Owens R.A., Hartmann P.E. Ultrasound imaging of milk ejection in the breast of lactating women. Pediatrics. 2004;113(2):361–367. https://doi.org/10.1542/peds.113.2.361.

23. Lif Holgerson P., Harnevik L., Hernell O., Tanner A.C., Johansson I. Mode of birth delivery affects oral microbiota in infants. J Dent Res. 2011;90(10):1183–1188. https://doi.org/10.1177/0022034511418973.

24. Drell T., Štšepetova J., Simm J., Rull K., Aleksejeva A., Antson A. et al. The Influence of Different Maternal Microbial Communities on the Development of Infant Gut and Oral Microbiota. Sci Rep. 2017;7(1):9940. https://doi.org/10.1038/s41598-017-09278-y.

25. Hunt K.M., Foster J.A., Forney L.J., Schütte U.M., Beck D.L., Abdo Z. et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE. 2011;6(6):e21313. https://doi.org/10.1371/journal.pone.0021313.

26. Williams J.E., Carrothers J.M., Lackey K.A., Beatty N.F., Brooker S.L., Peterson H.K. et al. Strong Multivariate Relations Exist Among Milk, Oral, and Fecal Microbiomes in Mother-Infant Dyads During the First Six Months Postpartum. J Nutr. 2019;149(6):902–914. https://doi.org/10.1093/jn/nxy299.

27. Kong H.H., Segre J.A. Skin microbiome: looking back to move forward. J Invest Dermatol. 2012;132(3):933–939. https://doi.org/10.1038/jid.2011.417.

28. Grice E.A., Kong H.H., Conlan S., Deming C.B., Davis J., Young A.C. et al. Topographical and temporal diversity of the human skin microbioime. Science. 2009;324(5931):1190–1192. https://doi.org/10.1126/science.1171700.

29. Zhang X., Mushajiang S., Luo B., Tian F., Ni Y., Yan W. the Composition and Concordance of Lactobacillus Populations of Infant Gut and the Corresponding Breast-Milk and Maternal Gut. Front Microbiol. 2020;11:597911. https://doi.org/10.3389/fmicb.2020.597911.

30. Cabrera-Rubio R., Collado M.C., Laitinen K., Salminen S., Isolauri E., Mira A. the human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr. 2012;96(3):544–555. https://doi.org/10.3945/ajcn.112.037382.

31. Rodríguez J.M. the origin of human milk bacteria: is there a bacterial entero-mammary pathway during late pregnancy and lactation? Adv Nutr. 2014;5(6):779–784. https://doi.org/10.3945/an.114.007229.

32. Родригеc Х.М. Микробиота женского молока. Педиатрия. Consilium Medicum. 2016;(4):35–40. Режим доступа: https://cyberleninka.ru/article/n/mikrobiota-zhenskogo-moloka.

33. Khodayar-Pardo P., Mira-Pascual L., Collado M., Martínez-Costa C. Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota. J Perinatol. 2014;34(8):599–605. https://doi.org/10.1038/jp.2014.47.

34. Jeurink P.V., van Bergenhenegouwen J., Jiménez E., Knippels L.M., Fernández L., Garssen J. et al. Human milk: a source of more life than we imagine. Benef Microbes. 2013;4(1):17–30. https://doi.org/10.3920/BM2012.0040.

35. Torres J., Hu J., Seki A., Eisele C., Nair N., Huang R. et al. Infants born to mothers with IBD present with altered gut microbiome that transfers abnormalities of the adaptive immune system to germ-free mice. Gut. 2020;69(1):42–51. https://doi.org/10.1136/gutjnl-2018-317855.

36. Urbaniak C., Cummins J., Brackstone M., Macklaim J.M., Gloor G.B., Baban C.K. et al. Microbiota of human breast tissue. Appl Environ Microbiol. 2014;80(10):3007–3014. https://doi.org/10.1128/AEM.00242-14.

37. Martín V., Maldonado-Barragán A., Moles L., Rodríguez-Baños M., Campo R.D., Fernández L. et al. Sharing of bacterial strains between breast milk and infant feces. J Hum Lact. 2012;28(1):36–44. https://doi.org/10.1177/0890334411424729.

38. Khine W.W.T., Rahayu E.S., See T.Y., Kuah S., Salminen S., Nakayama J., Lee Y.K. Indonesian children fecal microbiome from birth until weaning was different from microbiomes of their mothers. Gut Microbes. 2020;12(1):1761240. https://doi.org/10.1080/19490976.2020.1761240.

39. Corona-Cervantes K., García-González I., Villalobos-Flores L.E., HernándezQuiroz F., Piña-Escobedo A., Hoyo-Vadillo C. et al. Human milk microbiota associated with early colonization of the neonatal gut in Mexican newborns. PeerJ. 2020;8:e9205. https://doi.org/10.7717/peerj.9205.

40. Pannaraj P., Li F., Cerini C., Bender J., Yang S., Rollie A. et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr. 2017;171(7):647–654. https://doi.org/10.1001/jamapediatrics.2017.0378.

41. Asnicar F., Manara S., Zolfo M., Truong D.T., Scholz M., Armanini F. et al. Studying Vertical Microbiome Transmission from Mothers to Infants by Strain-LevelMetagenomic Profiling. mSystems. 2017;2(1):e00164–16. https://doi.org/10.1128/mSystems.00164-16.

42. Ding M., Qi C., Yang Z., Jiang S., Bi Y., Lai J., Sun J. Geographical location specific composition of cultured microbiota and Lactobacillus occurrence in human breast milk in China. Food Funct. 2019;10(2):554–564. https://doi.org/10.1039/C8FO02182A.

43. Martín R., Olivares M., Marín M.L., Fernández L., Xaus J., Rodríguez J.M. Probiotic potential of 3 Lactobacilli strains isolated from breast milk. J Hum Lact. 2005;21(1):8–17. https://doi.org/10.1177/0890334404272393.

44. Martín R., Jiménez E., Olivares M., Marín M.L., Fernández L., Xaus J., Rodríguez J.M. Lactobacillus salivarius CECT 5713, a potential probiotic strain isolated from infant feces and breast milk of a mother-child pair. Int J Food Microbiol. 2006;112(1):35–43. https://doi.org/10.1016/j.ijfoodmicro.2006.06.011.

45. Захарова И.Н., Бережная И.В., Сугян Н.Г., Санникова Т.Н., Кучина А.Е., Сазанова Ю.О. Что мы знаем сегодня о Lactobacillus reuteri? Медицинский совет. 2018;(2):163–169. https://doi.org/10.21518/2079-701X-2018-2-163-169.

46. Dobson A., Cotter P.D., Ross R.P., Hill C. Bacteriocin production: a probiotic trait? Appl Environ Microbiol. 2012;78(1):1–6. https://doi.org/10.1128/AEM.05576-11.

47. Rogers L.A. the inhibiting effect of streptococcus lactis on lactobacillus bulgaricus. J Bacteriol. 1928;16(5):321–325. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC375033.

48. Beasley S.S., Saris P.E. Nisin-producing Lactococcus lactis strains isolated from human milk. Appl Environ Microbiol. 2004;70(8):5051–5053. https://doi.org/10.1128/AEM.70.8.5051-5053.2004.

49. Maldonado-Barragán A., Caballero-Guerrero B., Jiménez E., Jiménez-Díaz R., Ruiz-Barba J.L., Rodríguez J.M. Enterocin C, a class IIb bacteriocin produced by E. faecalis C901, a strain isolated from human colostrum. Int J Food Microbiol. 2009;133(1–2):105–112. https://doi.org/10.1016/j.ijfoodmicro.2009.05.008.

50. Jara S., Sánchez M., Vera R., Cofré J., Castro E. the inhibitory activity of Lactobacillus spp. isolated from breast milk on gastrointestinal pathogenic bacteria of nosocomial origin. Anaerobe. 2011;17(6):474–477. https://doi.org/10.1016/j.anaerobe.2011.07.008.

51. Flynn S., van Sinderen D., Thornton G.M., Holo H., Nes I.F., Collins J.K. Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118. Microbiology (Reading). 2002;148(Pt 4):973–984. https://doi.org/10.1099/00221287-148-4-973.

52. Martín V., Maldonado-Barragán A., Jiménez E., Ruas-Madiedo P., Fernández L., Rodríguez J.M. Complete genome sequence of Streptococcus salivarius PS4, a strain isolated from human milk. J Bacteriol. 2012;194(16):4466–4467. https://doi.org/10.1128/JB.00896-12.

53. Obermajer T., Lipoglavšek L., Tompa G., Treven P., Lorbeg P.M., Matijašić B.B., Rogelj I. Colostrum of healthy Slovenian mothers: microbiota composition and bacteriocin gene prevalence. PLoS ONE. 2015;10(4):e0123324. https://doi.org/10.1371/journal.pone.0123324.

54. Abdi M., Lohrasbi V., Asadi A., Esghaei M., Jazi F.M., Rohani M., Talebi M. Interesting probiotic traits of mother’s milk Lactobacillus isolates; from bacteriocin to inflammatory bowel disease improvement. Microb Pathog. 2021;158:104998. https://doi.org/10.1016/j.micpath.2021.104998.

55. Nakano V., Ignacio A., Fernandes M.R., Fukugaiti M.H., Avila-Campos M.J. Intestinal Bacteroides and Parabacteroides species producing antagonistic substances. Microbiology. 2006;1:61–64. Available at: https://www.researchgate.net/publication/269630510_Intestinal_Bacteroides_and_Parabacteroides_species_producing_antagonistic_substances.

56. Корниенко Е.А. Микробиота кишечника как ключевой фактор формирования иммунитета и толерантности. Возможности пробиотиков. Медицинский совет. 2020;(10):92–100. https://doi.org/10.21518/2079-701X-2020-10-92-100.

57. Tissier H. Traitement des infections intestinales par la méthode de la flore bactérienne de l’intestin. C. R. Soc. Biol. 1906;60:359–361.

58. Ventura M., Turroni F., Motherway M.O., MacSharry J., van Sinderen D. Hostmicrobe interactions that facilitate gut colonization by commensal bifidobacteria. Trends Microbiol. 2012;20(10):467–476. https://doi.org/10.1016/j.tim.2012.07.002.

59. Milani C., Mancabelli L., Lugli G.A., Duranti S., Turroni F., Ferrario C. et al. Exploring Vertical Transmission of Bifidobacteria from Mother to Child. Appl Environ Microbiol. 2015;81(20):7078–7087. https://doi.org/10.1128/AEM.02037-15.

60. Round J.L., Lee S.M., Li J., Tran G., Jabri B., Chatila T.A., Mazmanian S.K. the Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 2011;332(6032):974–977. https://doi.org/10.1126/science.1206095.

61. Safavi M., Farajian S., Kelishadi R., Mirlohi M., Hashemipour M. the effects of synbiotic supplementation on some cardio-metabolic risk factors in overweight and obese children: a randomized triple-masked controlled trial. Int J Food Sci Nutr. 2013;64(6):687–693. https://doi.org/10.3109/09637486.2013.775224.

62. Shao Y., Forster S.C., Tsaliki E., Vervier K., Strang A., Simpson N. et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature. 2019;574(7776):117–121. https://doi.org/10.1038/s41586-019-1560-1.

63. Stearns J.C., Simioni J., Gunn E., McDonald H., Holloway A.C., Thabane L. et al. Intrapartum antibiotics for GBS prophylaxis alter colonization patterns in the early infant gut microbiome of low risk infants. Sci Rep. 2017;7(1):16527. https://doi.org/10.1038/s41598-017-16606-9.

64. Coker M.O., Hoen A.G., Dade E., Lundgren S., Li Z., Wong A.D. et al. Specific class of intrapartum antibiotics relates to maturation of the infant gut microbiota: a prospective cohort study. BJOG. 2020;127(2):217–227. https://doi.org/10.1111/1471-0528.15799.

65. Tonon K.M., Morais T.B., Taddei C.R., Araújo-Filho H.B., Abrão A., Miranda A., de Morais M.B. Gut microbiota comparison of vaginally and cesarean born infants exclusively breastfed by mothers secreting α1-2 fucosylated oligosaccharides in breast milk. PLoS ONE. 2021;16(2):e0246839. https://doi.org/10.1371/journal.pone.0246839.

66. Amir L.H. Academy of Breastfeeding Medicine Protocol Committee. ABM clinical protocol #4: Mastitis, revised March 2014. Breastfeed Med. 2014;9(5):239–243. https://doi.org/10.1089/bfm.2014.9984.

67. Савельева Г.М., Сухих Г.Т., Серов В.Н., Радзинский В.Е. (ред.). Акушерство: национальное руководство. 2-е изд. М.: ГЭОТАР-Медиа; 2019. 1080 с. Режим доступа: http://www.ma.cfuv.ru/docs/248191/%D1%81%D0%B0%D0%B2%D0%B5%D0%BB%D1%8C%D0%B5%D0%B2%D0%B0.pdf.

68. Родригес Х. Мастит у женщин: новый взгляд на старую проблему. Медицинский совет. 2017;(1):34–44. https://doi.org/10.21518/2079-701X-2017-1-34-44.

69. Patel S.H., Vaidya Y.H., Patel R.J., Pandit R.J., Joshi C.G., Kunjadiya A.P. Culture independent assessment of human milk microbial community in lactational mastitis. Sci Rep. 2017;7(1):7804. https://doi.org/10.1038/s41598-017-08451-7.

70. Delgado S., Arroyo R., Jiménez E., Marín M.L., del Campo R., Fernández L., Rodríguez J.M. Staphylococcus epidermidis strains isolated from breast milk of women suffering infectious mastitis: potential virulence traits and resistance to antibiotics. BMC Microbiol. 2009;9:82. https://doi.org/10.1186/1471-2180-9-82.

71. Arroyo R., Martín V., Maldonado A., Jiménez E., Fernández L., Rodríguez J.M. Treatment of Infectious Mastitis during Lactation: Antibiotics versus Oral Administration of Lactobacilli Isolated from Breast Milk. Clin Infect Dis. 2010;50(12):1551–1558. https://doi.org/10.1086/652763.

72. Hurtado J.A., Maldonado-Lobón J.A., Díaz-Ropero M.P., Flores-Rojas K., Uberos J., Leante, J. L. et al. Oral Administration to Nursing Women of Lactobacillus fermentum CECT5716 Prevents Lactational Mastitis Development: a Randomized Controlled Trial. Breastfeed Med. 2017;12(4):202–209. https://doi.org/10.1089/bfm.2016.0173.

73. Cárdenas N., Laiño J.E., Delgado S., Jiménez E., Juárez del Valle M., Savoy de Giori G. et al. Relationships between the genome and some phenotypical properties of Lactobacillus fermentum CECT 5716, a probiotic strain isolated from human milk. Appl Microbiol Biotechnol. 2015;99(10):4343–4353. https://doi.org/10.1007/s00253-015-6429-0.

74. Kang M.S., Lim H.S., Oh J.S., Lim Y.J., Wuertz-Kozak K., Harro J.M. et al. Antimicrobial activity of Lactobacillus salivarius and Lactobacillus fermentum against Staphylococcus aureus. Pathog Dis. 2017;75(2). https://doi.org/10.1093/femspd/ftx009.

75. Olivares M., Díaz-Ropero M.P., Sierra S., Lara-Villoslada F., Fonollá J., Navas M. et al. Oral intake of Lactobacillus fermentum CECT5716 enhances the effects of influenza vaccination. Nutrition. 2007;23(3):254–260. https://doi.org/10.1016/j.nut.2007.01.004.

76. Захарова И.Н., Кучина А.Е., Бережная И.В. Новые возможности для сохранения грудного вскармливания за счет применения пробиотиков для профилактики мастита и лактостаза у кормящих женщин. Медицинский совет. 2019;(17):17–23. https://doi.org/10.21518/2079-701X-2019-17-17-23.

77. Díaz-Ropero M.P., Martín R., Sierra S., Lara-Villoslada F., Rodríguez J.M., Xaus J., Olivares M. Two Lactobacillus strains, isolated from breast milk, differently modulate the immune response. J Appl Microbiol. 2007;102(2):337–343. https://doi.org/10.1111/j.1365-2672.2006.03102.x.

78. Jahanfar S., Ng C.J., Teng C.L. Antibiotics for mastitis in breastfeeding women. Cochrane Database Syst Rev. 2013;(2):CD005458. https://doi.org/10.1002/14651858.CD005458.pub3.

79. de Moreno de LeBlanc A., Matar C., Thériault C., Perdigón G. Effects of milk fermented by Lactobacillus helveticus R389 on immune cells associated to mammary glands in normal and a breast cancer model. Immunobiology. 2005;210(5):349–358. https://doi.org/10.1016/j.imbio.2005.05.024

80. Maroof H., Hassan Z.M., Mobarez A.M., Mohamadabadi M.A. Lactobacillus acidophilus could modulate the immune response against breast cancer in murine model. J Clin Immunol. 2012;32(6):1353–1359. https://doi.org/10.1007/s10875-012-9708-x.

81. Chan A.A., Bashir M., Rivas M.N., Duvall K., Sieling P.A., Pieber T.R. et al. Characterization of the microbiome of nipple aspirate fluid of breast cancer survivors. Sci Rep. 2016;6:28061. https://doi.org/10.1038/srep28061.

82. Liu C., Tseng Y.P., Chan L.P., Liang C.H. the potential of Streptococcus thermophiles (TCI633) in the anti-aging. J Cosmet Dermatol. 2021. https://doi.org/10.1111/jocd.14445.


Рецензия

Для цитирования:


Захарова И.Н., Кучина А.Е. Микробиота грудного молока (представление, источники, роль бактерий для ребенка и матери). Медицинский Совет. 2022;(1):27-35. https://doi.org/10.21518/2079-701X-2022-16-1-27-35

For citation:


Zakharova I.N., Кuchina A.E. Breast milk microbiota (concept, sources, role of bacteria for a child and mother). Meditsinskiy sovet = Medical Council. 2022;(1):27-35. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-1-27-35

Просмотров: 420


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)