Preview

Meditsinskiy sovet = Medical Council

Advanced search

Comprehensive rehabilitation of patients with post-stroke upper limb dysfunction: a randomized controlled trial

https://doi.org/10.21518/2079-701X-2022-16-21-36-45

Abstract

Introduction. The restoration of manipulative activity of the upper limb after an ischemic stroke (IS) requires the development of new technologies aimed at sensorimotor training and retraining. Reduction of spasticity of the upper limb muscles is considered as a necessary component of the program of functional restoration of the hand
Aim. To evaluate the effectiveness and safety of the integrated use of rehabilitation technology with virtual reality and biofeedback “SENSOREHAB simulator glove” (RG) and botulinum neurotoxin type A (BTA) to restore the subject-manipulative function of the hand in comparison with an individual complex of physical therapy in the late recovery period of IS.
Materials and methods. A randomized controlled trial included 76 patients, age 60.8 ± 9.2 years; the duration of the transferred IS was 8.1 ± 1.3 months. The main group (n = 42) received BTA with subsequent use of RP. The control group (n = 34) – individual physical therapy. The primary results were changes in the scores on the Fugl – Meyer scales (FMA–UL), the Action Research Arm Test (ARAT), the test with pegs and nine holes (NHPT). Secondary results: dynamics of MRCS, MAS, MoCA, HADS, Bartel index and quality of life (EuroQol-5D).
Results. Improvement of the motor function of the arm in the main group according to ARAT (an increase of ≥4 points) was noted in 63.8% of cases, on the FMA–UL scale (an increase of ≥7 points in sections A–D) – in 65.5% of patients (p < 0.05), according to the NHPT test – a significant increase in the speed of execution The test was performed in 52.6% of patients. The dynamics of EQ-5D-5 (VAS) at the end of treatment reached 72.3 ± 5.7 in the main group (p = 0.03). In patients of the control group, a statistically significant improvement was noted in terms of pain and EQ-5D-5 (p < 0.05).
Conclusions. A comprehensive program of medical rehabilitation of patients with post-stroke upper limb dysfunction, including the use of BTA and RG, significantly improves the recovery of fine hand movements, functional independence of patients and their quality of life.

About the Authors

E. V. Kostenko
Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine; Pirogov Russian National Research Medical University
Russian Federation

Elena V. Kostenko, Dr. Sci. (Med.), Chief Scientific Officer; neurologist, Professor of the Department of Neurology 

53, Zemlyanoy Val, Moscow, 105120

1, Ostrovityanov St., Moscow, 117997



L. V. Petrova
Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine
Russian Federation

Liudmila V. Petrova, Cand. Sci. (Med.), Senior Member 

53, Zemlyanoy Val, Moscow, 105120



I. V. Pogonchenkova
Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine
Russian Federation

Irena V. Pogonchenkova, Dr. Sci. (Med.) 

53, Zemlyanoy Val, Moscow, 105120



N. V. Neprintseva
Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine
Russian Federation

Natalia V. Neprintseva, Cand. Sci. (Med.), Therapist 

53, Zemlyanoy Val, Moscow, 105120



S. T. Shurupova
Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine
Russian Federation

Svetlana T. Shurupova, Junior Research Fellow 

53, Zemlyanoy Val, Moscow, 105120



References

1. Hankey G.J. The global and regional burden of stroke. Lancet Glob Health. 2013;1(5):e239–e240. https://doi.org/10.1016/S2214-109X(13)70095-0.

2. Salazar A.P., Pinto C., Ruschel Mossi J.V., Figueiro B., Lukrafka J.L., Pagnussat A.S. Effectiveness of static stretching positioning on post-stroke upper-limb spasticity and mobility: Systematic review with meta-analysis. Ann Phys Rehabil Med. 2019;62(4):274–282. https://doi.org/10.1016/j.rehab.2018.11.004.

3. Norrving B., Kissela B. The global burden of stroke and need for a continuum of care. Neurology. 2013;80(3 Suppl. 2):S5–S12. https://doi.org/10.1212/WNL.0b013e3182762397.

4. Brainin M. Poststroke spasticity: Treating to the disability. Neurology. 2013;80(2):S1–S4. https://doi.org/10.1212/wnl.0b013e3182762379.

5. Пандьян А.Д., Херменс Х.Дж., Конвей Б.А. (ред.) Нейрореабилитация. Спастичность и контрактуры в клинической практике и исследованиях. М.: ГЭОТАРМедиа; 2021. 336 с. https://doi.org/10.33029/9704-5954-6-NR-2021-1-336. Pandyan A.D., Hermens H.J., Conway B.A. (eds.). Neurological Rehabilitation. Spasticity and Contractures in Clinical Practice and Research. 1st ed. CRC Press; 2017. https://doi.org/10.1201/9781315374369.

6. Гусев Е.И., Бойко А.Н., Костенко Е.В. Спастичность: клиника, диагностика и комплексная реабилитация с применением ботулинотерапии. 2-е изд., перераб. и доп. М.: ГЭОТАР-Медиа; 2019. 288 с. https://doi.org/10.33029/9704-5337-7-SPA-2020-1-288. Gusev E.I., Boyko A.N., Kostenko E.V. Spasticity: clinic, diagnosis and comprehensive rehabilitation with the use of botulinum therapy. 2nd ed., Moscow: GEOTAR-Media; 2019. 288 p. (In Russ.) https://doi.org/10.33029/9704-5337-7-SPA-2020-1-288.

7. Li S. Spasticity, Motor Recovery, and Neural Plasticity after Stroke. Front Neurol. 2017;(8):120. https://doi.org/10.3389/fneur.2017.00120.

8. Nakayama H., Jørgensen H.S., Raaschou H.O., Olsen T.S. Compensation in recovery of upper extremity function after stroke: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1994;75(8):852–857. https://doi.org/10.1016/0003-9993(94)90108-2.

9. Meyer S., Karttunen A.H., Thijs V., Feys H., Verheyden G. How do somatosensory deficits in the arm and hand relate to upper limb impairment, activity, and participation problems after stroke? A systematic review. Phys Ther. 2014;94(9):1220–1231. https://doi.org/10.2522/ptj.20130271.

10. Hara Y. Brain plasticity and rehabilitation in stroke patients. J Nippon Med Sch. 2015;82(1):4–13. https://doi.org/10.1272/jnms.82.4.

11. Roby-Brami A., Jarrassé N., Parry R. Impairment and Compensation in Dexterous Upper-Limb Function After Stroke. From the Direct Consequences of Pyramidal Tract Lesions to Behavioral Involvement of Both Upper-Limbs in Daily Activities. Front Hum Neurosci. 2021;(15):662006. https://doi.org/10.3389/fnhum.2021.662006.

12. Li S., Francisco G.E. New insights into the pathophysiology of post-stroke spasticity. Front Hum Neurosci. 2015;(9):192. https://doi.org/10.3389/fnhum.2015.00192.

13. Pandyan A.D., Gregoric M., Barnes M.P., Wood D., Van Wijck F., Burridge J. et al. Spasticity: clinical perceptions, neurological realities and meaningful measurement. Disabil Rehabil. 2005;27(1–2):2–6. https://doi.org/10.1080/09638280400014576.

14. Dietz V., Sinkjaer T. Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol. 2007;6(8):725–733. https://doi.org/10.1016/S1474-4422(07)70193-X.

15. Barnes M. An overview of the clinical management of spasticity. In: Barnes M., Johnson G. (eds.). Upper Motor Neurone Syndrome and Spasticity: Clinical Management and Neurophysiology. Cambridge: Cambridge University Press; 2008, pp. 1–8. https://doi.org/10.1017/CBO9780511544866.002.

16. Barow E., Pinnschmidt H., Boutitie F., Königsberg A., Ebinger M., Endres M. et al. Symptoms and probabilistic anatomical mapping of lacunar infarcts. Neurol Res Pract. 2020;(2):21. https://doi.org/10.1186/s42466-020-00068-y.

17. Ambrosini E., Peri E., Nava C., Longoni L., Monticone M., Pedrocchi A. et al. A multimodal training with visual biofeedback in subacute stroke survivors: a randomized controlled trial. Eur J Phys Rehabil Med. 2020;56(1):24–33. https://doi.org/10.23736/S1973-9087.19.05847-7.

18. Lee S.H., Lee J.Y., Kim M.Y., Jeon Y.J., Kim S., Shin J.H. Virtual Reality Rehabilitation With Functional Electrical Stimulation Improves Upper Extremity Function in Patients With Chronic Stroke: A Pilot Randomized Controlled Study. Arch Phys Med Rehabil. 2018;99(8):1447–1453.e1. https://doi.org/10.1016/j.apmr.2018.01.030.

19. De Arriba-Pérez F., Caeiro-Rodríguez M., Santos-Gago J.M. Collection and Processing of Data from Wrist Wearable Devices in Heterogeneous and Multiple-User Scenarios. Sensors (Basel). 2016;16(9):1538. https://doi.org/10.3390/s16091538.

20. Caeiro-Rodríguez M., Otero-González I., Mikic-Fonte F.A., Llamas-Nistal M. A Systematic Review of Commercial Smart Gloves: Current Status and Applications. Sensors (Basel). 2021;21(8):2667. https://doi.org/10.3390/s21082667.

21. Henderson J., Condell J., Connolly J., Kelly D., Curran K. Review of Wearable Sensor-Based Health Monitoring Glove Devices for Rheumatoid Arthritis. Sensors (Basel). 2021;21(5):1576. https://doi.org/10.3390/s21051576.

22. Shin J.H., Kim M.Y., Lee J.Y., Jeon Y.J., Kim S., Lee S. et al. Effects of virtual reality-based rehabilitation on distal upper extremity function and healthrelated quality of life: a single-blinded, randomized controlled trial. J Neuroeng Rehabil. 2016;(13):17. https://doi.org/10.1186/s12984-016-0125-x.

23. Laver K.E., Lange B., George S., Deutsch J.E., Saposnik G., Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017;11(11):CD008349. https://doi.org/10.1002/14651858.CD008349.pub4.

24. Lin S.H., Dionne T.P. Interventions to Improve Movement and Functional Outcomes in Adult Stroke Rehabilitation: Review and Evidence Summary. J Particip Med. 2018;10(1):e3. https://doi.org/10.2196/jopm.8929.

25. Акжигитов Р.Г., Алекян Б.Г., Алферова В.В., Белкин А.А., Беляева И.А., Бойцов С.А. и др. Ишемический инсульт и транзиторная ишемическая атака у взрослых: клинические рекомендации. 2022. Режим доступа: https://cr.minzdrav.gov.ru/schema/171. Akzhigitov R.G., Alekyan B.G., Alferova V.V., Belkin A.A., Belyaeva I.A., Boytsov S.A. et al. Ischemic stroke and transient ischemic attack in adults: clinical guidelines. 2022. (In Russ.) Available at: https://cr.minzdrav.gov.ru/schema/171.

26. Hara T., Abo M., Hara H., Kobayashi K., Shimamoto Y., Samizo Y. et al. Effects of botulinum toxin A therapy and multidisciplinary rehabilitation on upper and lower limb spasticity in post-stroke patients. Int J Neurosci. 2017;127(6):469–478. https://doi.org/10.1080/00207454.2016.1196204.

27. Hara T., Momosaki R., Niimi M., Yamada N., Hara H., Abo M. Botulinum Toxin Therapy Combined with Rehabilitation for Stroke: A Systematic Review of Effect on Motor Function. Toxins (Basel). 2019;11(12):707. https://doi.org/10.3390/toxins11120707.

28. Hara T., Abo M., Hara H., Sasaki N., Yamada N., Niimi M., Shimamoto Y. The Effect of Repeated Botulinum Toxin A Therapy Combined with Intensive Rehabilitation on Lower Limb Spasticity in Post-Stroke Patients. Toxins (Basel). 2018;10(9):349. https://doi.org/10.3390/toxins10090349.

29. Dong Y., Wu T., Hu X., Wang T. Efficacy and safety of botulinum toxin type A for upper limb spasticity after stroke or traumatic brain injury: a systematic review with meta-analysis and trial sequential analysis. Eur J Phys Rehabil Med. 2017;53(2):256–267. https://doi.org/10.23736/S1973-9087.16.04329-X.

30. Veverka T., Hluštík P., Otruba P., Hok P., Opavský R., Zapletalová J., Kaňovský P. Cortical somatosensory processing after botulinum toxin therapy in poststroke spasticity. Medicine (Baltimore). 2021;100(25):e26356. https://doi.org/10.1097/MD.0000000000026356.

31. Bensmail D., Wissel J., Laffont I., Simon O., Scheschonka A., Flatau-Baqué B. et al. Efficacy of incobotulinumtoxinA for the treatment of adult lower-limb post-stroke spasticity, including pes equinovarus. Ann Phys Rehabil Med. 2021;64(2):101376. https://doi.org/10.1016/j.rehab.2020.03.005.

32. Kaňovský P., Elovic E.P., Munin M.C., Hanschmann A., Pulte I., Althaus M. et al. Sustained efficacy of incobotulinumtoxina repeated injections for upper-limb post-stroke spasticity: A post hoc analysis. J Rehabil Med. 2021;53(1):jrm00138. https://doi.org/10.2340/16501977-2760.

33. Masakado Y., Abo M., Kondo K., Saeki S., Saitoh E., Dekundy A. et al.Efficacy and safety of incobotulinumtoxinA in post-stroke upper-limb spasticity in Japanese subjects: results from a randomized, double-blind, placebocontrolled study (J-PURE). J Neurol. 2020;267(7):2029–2041. https://doi.org/10.1007/s00415-020-09777-5.

34. Marciniak C., Munin M.C., Brashear A., Rubin B.S., Patel A.T., Slawek J. et al. IncobotulinumtoxinA Efficacy and Safety in Adults with Upper-Limb Spasticity Following Stroke: Results from the Open-Label Extension Period of a Phase 3 Study. Adv Ther. 2019;36(1):187–199. https://doi.org/10.1007/s12325-018-0833-7.

35. Хатькова С.Е., Байкова А., Мезоноб П., Хасанова Д.Р. Влияние комплексного лечения спастичности верхней конечности, включающего повторные инъекции ботулинического токсина типа A, на достижение целей, ориентированных на нужды пациента, в реальной клинической практике: результаты международного проспективного, наблюдательного исследования спастичности верхней конечности ULIS-III в российской подгруппе пациентов. Журнал неврологии и психиатрии им. С.С. Корсакова. 2021;121(11):39–48. https://http://doi.org/10.17116/jnevro202112111139. Khatkova S.E., Baikova A., Maisonobe P., Khasanova D.R. Impact of integrated upper limb spasticity management including repeat botulinum toxin type A (BoNT-A) injections on patient-centred goal attainment in real-life practice: results from the prospective, observational Upper Limb International Spasticity cohort study (ULIS-III) in a Russian subpopulation. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2021;121(11):39–48. (In Russ.) https://http://doi.org/10.17116/jnevro202112111139.

36. Ward A.B. Handbook of the management of adult spasticity course. Stoke on Trent; 2008.

37. Rosales R.L., Chua-Yap A.S. Evidence-based systematic review on the efficacy and safety of botulinum toxin-A therapy in post-stroke spasticity. J Neural Transm (Vienna). 2008;115(4):617–623. https://doi.org/10.1007/s00702-007-0869-3.

38. Simpson D.M., Gracies J.M., Graham H.K., Miyasaki J.M., Naumann M., Russman B. et al. Assessment: Botulinum neurotoxin for the treatment of spasticity (an evidence-based review): report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2008;70(19):1691–1698. https://doi.org/10.1212/01.wnl.0000311391.00944.c4.

39. Wissel J., Ward A.B., Erztgaard P., Bensmail D., Hecht M.J., Lejeune T.M. et al. European consensus table on the use of botulinum toxin type A in adult spasticity. J Rehabil Med. 2009;41(1):13–25. https://doi.org/10.2340/16501977-0303.

40. Barnes M., Schnitzler A., Medeiros L., Aguilar M., Lehnert-Batar A., Minnasch P. Efficacy and safety of NT 201 for upper limb spasticity of various etiologies – a randomized parallel-group study. Acta Neurol Scand. 2010;122(4):295–302. https://doi.org/10.1111/j.1600-0404.2010.01354.x.

41. Kanovský P., Slawek J., Denes Z., Platz T., Sassin I., Comes G., Grafe S. Efficacy and safety of botulinum neurotoxin NT 201 in poststroke upper limb spasticity. Clin Neuropharmacol. 2009;32(5):259–265. https://doi.org/10.1097/WNF.0b013e3181b13308.

42. Hung J.W., Chen Y.W., Chen Y.J., Pong Y.P., Wu W.C., Chang K.C., Wu C.Y. The Effects of Distributed vs. Condensed Schedule for Robot-Assisted Training with Botulinum Toxin A Injection for Spastic Upper Limbs in Chronic Post-Stroke Subjects. Toxins (Basel). 2021;13(8):539. https://doi.org/10.3390/toxins13080539.

43. Nasb M., Shah S.Z.A., Chen H., Youssef A.S., Li Z., Dayoub L. et al. Constraint-Induced Movement Therapy Combined With Botulinum Toxin for Post-stroke Spasticity: A Systematic Review and Meta-Analysis. Cureus. 2021;13(9):e17645. https://doi.org/10.7759/cureus.17645.

44. He Y.L., Gao Y., Fan B.Y. Effectiveness of neuromuscular electrical stimulation combined with rehabilitation training for treatment of post-stroke limb spasticity. Medicine (Baltimore). 2019;98(39):e17261. https://doi.org/10.1097/MD.0000000000017261.

45. Intiso D., Santamato A., Di Rienzo F. Effect of electrical stimulation as an adjunct to botulinum toxin type A in the treatment of adult spasticity: a systematic review. Disabil Rehabil. 2017;39(21):2123–2133. https://doi.org/10.1080/09638288.2016.1219398.

46. Костенко Е.В., Петрова Л.В., Энеева М.А. Функциональная электростимуляция в комплексной реабилитации пациентов с постинсультной спастичностью нижней конечности. Доктор.Ру. 2014;(13):15–21. Режим доступа: https://cyberleninka.ru/article/n/funktsionalnaya-elektrostimulyatsiya-vkompleksnoy-reabilitatsii-patsientov-s-postinsultnoy-spastichnostyu-nizhneykonechnosti. Kostenko E.V., Petrova L.V., Ageeva M.A. Functional electrostimulation in complex rehabilitation of patients with post-stroke spasticity of the lower limb. Doctor.ru. 2014;(13):15–21.(In Russ.) Available at: https://cyberleninka.ru/article/n/funktsionalnaya-elektrostimulyatsiya-v-kompleksnoyreabilitatsii-patsientov-s-postinsultnoy-spastichnostyu-nizhney-konechnosti.

47. Mills P.B., Finlayson H., Sudol M., O’Connor R. Systematic review of adjunct therapies to improve outcomes following botulinum toxin injection for treatment of limb spasticity. Clin Rehabil. 2016;30(6):537–548. https://doi.org/10.1177/0269215515593783.

48. Ashford S., Turner-Stokes L. Goal attainment for spasticity management using botulinum toxin. Physiother Res Int. 2006;11(1):24–34. https://doi.org/10.1002/pri.36.

49. Хасанова Д.Р., Агафонова Н.В., Старостина Г.Х., Крылова Л.В. Постинсультная спастичность. Consilium Medicum. 2016;18(2):31–36. Режим доступа: https://cyberleninka.ru/article/n/postinsultnaya-spastichnost. Khasanova D.R., Agafonova N.V., Starostina G.H., Krylova L.V. Post-stroke spasticity. Consilium Medicum. 2016;18(2):31–36. (In Russ.) Available at: https://cyberleninka.ru/article/n/postinsultnaya-spastichnost.

50. Patel P., Kaingade S.R., Wilcox A., Lodha N. Force control predicts fine motor dexterity in high-functioning stroke survivors. Neurosci Lett. 2020;(729):135015. https://doi.org/10.1016/j.neulet.2020.135015.

51. Coleman E.R., Moudgal R., Lang K, Hyacinth H.I., Awosika O.O., Kissela B.M., Feng W. Early Rehabilitation After Stroke: a Narrative Review. Curr Atheroscler Rep. 2017;19(12):59. https://doi.org/10.1007/s11883-017-0686-6.

52. Bohannon R.W., Smith M.B. Interrater reliability of a modified Ashworth scale of muscle spasticity. PhysTher. 1987;67(2):206–207. https://doi.org/10.1093/ptj/67.2.206.

53. Nasreddine Z.S., Phillips N.A., Bédirian V., Charbonneau S., Whitehead V., Collin I. et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x.

54. Zigmond A.S., Snaith R.P. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67(6):361–370. https://doi.org/10.1111/j.1600-0447.1983.tb09716.x.

55. Fugl-Meyer A.R., Jääskö L., Leyman I., Olsson S., Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13–31. Available at: https://pubmed.ncbi.nlm.nih.gov/1135616/.

56. McDonnell M. Action research arm test. Aust J Physiother. 2008;54(3):220. https://doi.org/10.1016/s0004-9514(08)70034-5.20.

57. Mathiowetz V., Volland G., Kashman N., Weber K. Adult norms for the Box and Block Test of manual dexterity. Am J Occup Ther. 1985;39(6):386–391. https://doi.org/10.5014/ajot.39.6.386.

58. Hawker G.A., Mian S., Kendzerska T., French M. Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res (Hoboken). 2011;63(11):S240–S252. https://doi.org/:10.1002/acr.20543.

59. Shah S., Vanclay F., Cooper B. Improving the sensitivity of the Barthel Index for stroke rehabilitation. J Clin Epidemiol. 1989;42(8):703–709. https://doi.org/10.1016/0895-4356(89)90065-6.

60. Balestroni G., Bertolotti G. EuroQol-5D (EQ-5D): an instrument for measuring quality of life. Monaldi Arch Chest Dis. 2012;78(3):155–159. https://doi.org/10.4081/monaldi.2012.121.

61. Saes M., Mohamed Refai M.I., van Beijnum B.J.F., Bussmann J.BJ., Jansma E.P., Veltink P.H. et al. Quantifying Quality of Reaching Movements Longitudinally Post-Stroke: A Systematic Review. Neurorehabil Neural Repair. 2022;36(3):183–207. https://doi.org/10.1177/15459683211062890.

62. Hubbard I.J., Parsons M.W., Neilson C., Carey L.M. Task-specific training: evidence for and translation to clinical practice. Occup Ther Int. 2009;16(3–4): 175–189. https://doi.org/10.1002/oti.275.

63. Schwarz A., Kanzler C.M., Lambercy O., Luft A.R., Veerbeek J.M. Systematic Review on Kinematic Assessments of Upper Limb Movements After Stroke. Stroke. 2019;50(3):718–727. https://doi.org/10.1161/STROKEAHA.118.023531.

64. Левин О.С., Боголепова А.Н. Постинсультные двигательные и когнитивные нарушения: клинические особенности и современные подходы к реабилитации. Журнал неврологии и психиатрии им. С.С. Корсакова. 2020;120(11):99–107. https://doi.org/10.17116/jnevro20201201119. Levin O.S., Bogolepova A.N. Poststroke motor and cognitive impairments: clinical features and current approaches to rehabilitation. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2020;120(11):99–107. (In Russ.) https://doi.org/10.17116/jnevro20201201119.

65. Tedla J.S., Gular K., Reddy R.S., de Sá Ferreira A., Rodrigues E.C., Kakaraparthi V.N. et al. Effectiveness of Constraint-Induced Movement Therapy (CIMT) on Balance and Functional Mobility in the Stroke Population: A Systematic Review and Meta-Analysis. Healthcare (Basel). 2022;10(3):495. https://doi.org/10.3390/healthcare10030495.

66. Aramaki A.L., Sampaio R.F., Reis A.C.S., Cavalcanti A., Dutra FCMSE. Virtual reality in the rehabilitation of patients with stroke: an integrative review. Arq Neuropsiquiatr. 2019;77(4):268–278. https://doi.org/10.1590/0004-282X20190025.

67. Sucharew H., Kleindorfer D., Khoury J.C., Alwell K., Haverbusch M., Stanton R. et al. Deriving Place of Residence, Modified Rankin Scale, and EuroQol-5D Scores from the Medical Record for Stroke Survivors. Cerebrovasc Dis. 2021;50(5):567–573. https://doi.org/10.1159/000516571.

68. Nath D., Singh N., Saini M., Srivastava M.V.P., Mehndiratta A. Design and Validation of Virtual Reality Task for Neuro-Rehabilitation of Distal Upper Extremities. Int J Environ Res Public Health. 2022;19(3):1442. https://doi.org/10.3390/ijerph19031442.

69. Rozevink S.G., van der Sluis C.K., Hijmans J.M. HoMEcare aRm rehabiL ItatioN (MERLIN): preliminary evidence of long term effects of telerehabilitation using an unactuated training device on upper limb function after stroke. J Neuroeng Rehabil. 2021;18(1):141. https://doi.org/10.1186/s12984-021-00934-z.


Review

For citations:


Kostenko EV, Petrova LV, Pogonchenkova IV, Neprintseva NV, Shurupova ST. Comprehensive rehabilitation of patients with post-stroke upper limb dysfunction: a randomized controlled trial. Meditsinskiy sovet = Medical Council. 2022;(21):36-45. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-21-36-45

Views: 699


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)