Preview

Медицинский Совет

Расширенный поиск

Коррекция метаболической дисфункции как метод восстановления функции репродуктивной системы у женщин

https://doi.org/10.21518/ms2023-087

Полный текст:

Аннотация

Инсулинорезистентность является основным патогенетическим компонентом многих метаболических заболеваний, включая ожирение, сахарный диабет 2-го типа, гестационный сахарный диабет, а также синдром поликистозных яичников (СПКЯ). Несмотря на то что на сегодняшний день механизмы формирования инсулинорезистентности не установлены, одним из перспективных направлений в настоящее время является поиск потенциальных терапевтических стратегий для ее коррекции, ввиду того, что это также улучшает течение сопутствующего основного заболевания. Инсулиносенситайзеры являются общепризнанным методом терапии СПКЯ по причине своей безопасности и эффективности в отношении нормализации метаболического и эндокринного профиля пациенток с синдромом поликистозных яичников. Ведущую позицию в этом направлении занимает комбинация мио-инозитола (МИ) с D-хиро-инозитолом (ДХИ) в соотношении 40:1, являющаяся, согласно проведенным исследованиям, сопоставимой с концентрацией инозитолов в плазме крови здоровых женщин. Такое соотношение МИ/ДХИ является эффективным как для нормализации метаболического профиля, так и  для регуляции менструального цикла и преодоления ановуляторного бесплодия. Анализ литературы показал, что ряд биологически активных веществ, таких как фолиевая кислота, витамин D и альфа-липоевая кислота, в сочетании с инсулиносенситайзерами обладает дополнительными преимуществами, что дает основания для продолжения исследований в отношении их значимости как компонентов комбинированного лечения, а также в поиске оптимальной дозы и продолжительности такой терапии. 

Об авторах

Г. Е. Чернуха
Научный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова
Россия

Чернуха Галина Евгеньевна, д.м.н., профессор, главный научный сотрудник отделения гинекологической эндокринологии,

117997, Москва, ул. Академика Опарина, д. 4



В. А. Пронина
Научный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова
Россия

Пронина Вероника Алексеевна, врач акушер-гинеколог, аспирант,

117997, Москва, ул. Академика Опарина, д. 4



Список литературы

1. Puttabyatappa M., Sargis R.M., Padmanabhan V. Developmental programming of insulin resistance: are androgens the culprits? J Endocrinol. 2020;245(3):R23–R48. https://doi.org/10.1530/JOE-20-0044.

2. Lee S.H., Park S.Y., Choi C.S. Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes Metab J. 2022;46(1):15–37. https://doi.org/10.4093/dmj.2021.0280.

3. Olatunbosun S.T., Griffing G.T. Insulin Resistance. Medscape. 2017. Available at: https://emedicine.medscape.com/article/122501-overview.

4. Laganà A.S., Vitale S.G., Noventa M., Vitagliano A. Current management of polycystic ovary syndrome: from bench to bedside. Int J Endocrinol. 2018;2018:7234543. https://doi.org/10.1155/2018/7234543.

5. He F.F., Li Y.M. Role of gut microbiota in the development of insulin resistance and the mechanism underlying polycystic ovary syndrome: a review. J Ovarian Res. 2020;13:73. https://doi.org/10.1186/s13048-020-00670-3.

6. Xu Y., Qiao J. Association of Insulin Resistance and Elevated Androgen Levels with Polycystic Ovarian Syndrome (PCOS): A Review of Literature. J Healthc Eng. 2022;2022:9240569. https://doi.org/10.1155/2022/9240569.

7. Azziz R. Polycystic ovary syndrome, reproductive endocrinology and infertility. Obstet Gynecol. 2018;132(2):321–336. https://doi.org/10.1097/AOG.0000000000002698.

8. Azziz R., Carmina E., Chen Z., Dunaif A., Laven J.S., Legro R.S., Lizneva D. et al. Polycystic ovary syndrome. Nat Rev Dis Primers. 2016;2:16057. https://doi.org/10.1038/nrdp.2016.57.

9. Carmina E., Longo R.A., Rini G.B., Lobo R.A. Phenotypic variation in hyperandrogenic women influences the finding of abnormal metabolic and cardiovascular risk parameters. J Clin Endocrinol Metab. 2005;90:2545–2549. https://doi.org/10.1210/jc.2004-2279.

10. Carmina E., Nasrallah M.P., Guastella E., Lobo R.A. Characterization of metabolic changes in the phenotypes of women with polycystic ovary syndrome in a large Mediterranean population from Sicily. Clin Endocrinol. 2019;91:553–560. https://doi.org/10.1111/cen.14063.

11. Moghetti P., Tosi F., Bonin C., Di Sarra D., Fiers T., Kaufman J.M., Giagulli V.A. et al. Divergences in insulin resistance between the different phenotypes of the polycystic ovary syndrome. J Clin Endocrinol Metab. 2013;98(4):E628–E637. https://doi.org/10.1210/jc.2012-3908.

12. Dapas M., Lin F.T.J., Nadkarni G.N., Sisk R., Legro R.S., Urbanek M., Hayes M.G., Dunaif A. Distinct subtypes of polycystic ovary syndrome with novel genetic associations: An unsupervised, phenotypic clustering analysis. PLoS Med. 2020;17(6):e1003132. https://doi.org/10.1371/journal.pmed.1003132.

13. Vrbikova J., Hill M., Bendlova B., Grimmichova T., Dvorakova K., Vondra K. et al. Incretin levels in polycystic ovary syndrome. Eur J Endocrinol. 2008;159(2):121–127. https://doi.org/10.1530/EJE-08-0097.

14. Willis D.S., Watson H., Mason H.D., Galea R., Brincat M., Franks S. Premature response to luteinizing hormone of Granulosa cells from Anovulatory women with polycystic ovary syndrome: relevance to mechanism of Anovulation. J Clin Endocrinol Metab. 1998;83(11):3984–3991. https://doi.org/10.1210/jcem.83.11.5232.

15. Dumesic D.A., Oberfield S.E., Stener-Victorin E., Marshall J.C., Laven J.S., Legro R.S. Scientific Statement on the Diagnostic Criteria, Epidemiology, Pathophysiology, and Molecular Genetics of Polycystic Ovary Syndrome. Endocr Rev. 2015;36(5):487–525. https://doi.org/10.1210/er.2015-1018.

16. Чернуха Г.Е., Мирошина Е.Д., Кузнецов С.Ю., Иванов И.А. Индекс массы тела, композиционный состав тела и метаболический профиль пациенток с синдромом поликистозных яичников. Акушерство и гинекология. 2021;(10):103–111. https://doi.org/10.18565/aig.2021.10.103-111.

17. Lee S.H., Park S.A., Ko S.H., Yim H.W., Ahn Y.B., Yoon K.H., Cha B.Y. Insulin resistance and inflammation may have an additional role in the link between cystatin C and cardiovascular disease in type 2 diabetes mellitus patients. Metabolism. 2010;59(2):241–246. https://doi.org/10.1016/j.metabol.2009.07.019.

18. Kelly C.C.J., Lyall H., Petrie J.R., Gould G.W., Connell J.M.C., Sattar N. Low grade chronic inflammation in women with polycystic ovarian syndrome. J Clin Endocrinol Metab. 2001;86:2453–2455. https://doi.org/10.1210/jcem.86.6.7580.

19. Aboeldalyl S., James C., Seyam E., Ibrahim E.M., Shawki H.E., Amer S. The Role of Chronic Inflammation in Polycystic Ovarian Syndrome-A Systematic Review and Meta-Analysis. Int J Mol Sci. 2021;22(5):2734. https://doi.org/10.3390/ijms22052734.

20. Teede H., Misso M., Costello M., Dokras A., Laven J., Moran L. et al. International evidence-¬based guideline for the assessment and management of polycystic ovary syndrome 2018. Melbourne, Australia: Monash University; 2018. 198 p. Available at: https://www.monash.edu/__data/assets/pdf_file/0004/1412644/PCOS_Evidence-Based-Guidelines_20181009.pdf.

21. Dietz de Loos A., Jiskoot G., Beerthuizen A., Busschbach J., Laven J. Metabolic health during a randomized controlled lifestyle intervention in women with PCOS. Eur J Endocrinol. 2021;186(1):53–64. https://doi.org/10.1530/EJE-21-0669.

22. Wharton S., Lau D.C.W., Vallis M., Sharma A.M., Biertho L., CampbellScherer D., Adamo K. Obesity in adults: a clinical practice guideline. CMAJ. 2020;192(31):E875–E891. https://doi.org/10.1503/cmaj.191707.

23. Napolitano A., Miller S., Nicholls A.W., Baker D., Van Horn S., Thomas E., Rajpal D. et al. Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus. PLoS ONE. 2014;9(7):e100778. https://doi.org/10.1371/journal.pone.0100778.

24. Zhao H., Xing C., Zhang J., He B. Comparative efficacy of oral insulin sensitizers metformin, thiazolidinediones, inositol, and berberine in improving endocrine and metabolic profiles in women with PCOS: a network meta-analysis. Reprod Health. 2021;18(1):171. https://doi.org/10.1186/s12978-021-01207-7.

25. Murthy P.P. Structure and nomenclature of inositol phosphates, phosphoinositides, and glycosylphosphatidylinositols. Subcell Biochem. 2006;39:1–19. https://doi.org/10.1007/0-387-27600-9_1.

26. Milewska E.M., Czyzyk A., Meczekalski B., Genazzani A.D. Inositol and human reproduction. From cellular metabolism to clinical use. Gynecol Endocrinol. 2016;32(9):690–695. https://doi.org/10.1080/09513590.2016.1188282.

27. Ijuin T., Takenawa T. Regulation of insulin signaling and glucose transporter 4 (GLUT4) exocytosis by phosphatidylinositol 3,4,5-trisphosphate (PIP3) phosphatase, skeletal muscle, and kidney enriched inositol polyphosphate phosphatase (SKIP). J Biol Chem. 2012;287:6991–6999. https://doi.org/10.1074/jbc.M111.335539.

28. Nestler J.E., Unfer V. Reflections on inositol(s) for PCOS therapy: Steps toward success. Gynecol Endocrinol. 2015;31:501–505. https://doi.org/10.3 109/09513590.2015.1054802.

29. Sun T.H., Heimark D.B., Nguygen T., Nadler J.L., Larner J. Both myo-inositol to chiro-inositol epimerase activities and chiro-inositol to myo-inositol ratios are decreased in tissues of GK type 2 diabetic rats compared to Wistar controls. Biochem Biophys Res Commun. 2002;293:1092–1098. https://doi.org/10.1016/S0006-291X(02)00313-3.

30. Fan C., Liang W., Wei M., Gou X., Han S., Bai J. Effects of D-Chiro-Inositol on Glucose Metabolism in db/db Mice and the Associated Underlying Mechanisms. Front Pharmacol. 2020;11:354. https://doi.org/10.3389/fphar.2020.00354.

31. Yap A., Nishiumi S., Yoshida K., Ashida H. Rat L6 myotubes as an in vitro model system to study GLUT4-dependent glucose uptake stimulated by inositol derivatives. Cytotechnology. 2007;55:103–108. https://doi.org/10.1007/s10616-007-9107-y.

32. Heimark D., McAllister J., Larner J. Decreased myo-inositol to chiroinositol (M/C) ratios and increased M/C epimerase activity in PCOS theca cells demonstrate increased insulin sensitivity compared to controls. Endocr J. 2014;61:111–117. https://doi.org/10.1507/endocrj.EJ13-0423

33. Larner J., Huang L.C., Tang G., Suzuki S., Schwartz C.F., Romero G. et al. Insulin mediators: structure and formation. Cold Spring Harb Symp Quant Biol. 1988;53(Pt. 2):965–971. https://doi.org/10.1101/SQB.1988.053.01.111.

34. Cabrera-Cruz H., Oróstica L., Plaza-Parrochia F., Torres-Pinto I., Romero C., Vega M. The insulin-sensitizing mechanism of myo-inositol is associated with AMPK activation and GLUT-4 expression in human endometrial cells exposed to a PCOS environment. Am J Physiol Endocrinol Metab. 2020;318:E237–E248. https://doi.org/10.1152/ajpendo.00162.2019.

35. Kennington A.S., Hill C.R., Craig J., Bogardus C., Raz I., Ortmeyer H.K., Hansen B.C., Romero G., Larner J. Low urinary chiro-inositol excretion in non-insulin-dependent diabetes mellitus. N Engl J Med. 1990;323:373–378. https://doi.org/10.1056/NEJM199008093230603.

36. Carlomagno G., Unfer V., Roseff S. The D-chiro-inositol paradox in the ovary. Fertil Steril. 2011;95:2515–2516. https://doi.org/10.1016/j.fertnstert.2011.05.027.

37. Unfer V., Carlomagno G., Papaleo E., Vailati S., Candiani M., Baillargeon J.P. Hyperinsulinemia Alters Myoinositol to d-chiroinositol Ratio in the Follicular Fluid of Patients With PCOS. Reprod Sci. 2014;21:854–858. https://doi.org/10.1177/1933719113518985.

38. Cheang K.I., Baillargeon J.P., Essah P.A., Ostlund R.E. Jr., Apridonize T., Islam L., Nestler J.E. Insulin-stimulated release of D-chiro-inositolcontaining inositolphosphoglycan mediator correlates with insulin sensitivity in women with polycystic ovary syndrome. Metabolism. 2008;57(10):1390–1397. https://doi.org/10.1016/j.metabol.2008.05.008.

39. Isabella R., Raffone E. CONCERN: Does ovary need D-chiro-inositol? J Ovarian Res. 2012;5(1):14. https://doi.org/10.1186/1757-2215-5-14.

40. Gateva A., Unfer V., Kamenov Z. The use of inositol(s) isomers in the management of polycystic ovary syndrome: a comprehensive review. Gynecol Endocrinol. 2018;34(7):545–550. https://doi.org/10.1080/09513590.2017.1421632.

41. Facchinetti F., Dante G., Dante I. The ratio of MI to DCI and its impact in the treatment of polycystic ovary syndrome: experimental and literature evidences. ISGE Series. 2016;3:103–109. https://doi.org/10.1007/978-3-319-23865-4_13.

42. Bevilacqua A., Dragotto J., Giuliani A., Bizzarri M. Myo-inositol and D-chiroinositol (40:1) reverse histological and functional features of polycystic ovary syndrome in a mouse model. J Cell Physiol. 2019;234(6):9387–9398. https://doi.org/10.1002/jcp.27623.

43. Gilling-Smith C., Willis D.S., Beard R.W., Franks S. Hypersecretion of androstenedione by isolated thecal cells from polycystic ovaries. J Clin Endocrinol Metab. 1994;79(4):1158–1165. https://doi.org/10.1210/jcem.79.4.7962289.

44. Nordio M., Basciani S., Camajani E. The 40:1 myo-inositol/D-chiro-inositol plasma ratio is able to restore ovulation in PCOS patients: comparison with other ratios. Eur Rev Med Pharmacol Sci. 2019;23(12):5512–5521. https://doi.org/10.26355/eurrev_201906_18223.

45. Thalamati, S. A comparative study of combination of Myo-inositol and D-chiro-inositol versus Metformin in the management of polycystic ovary syndrome in obese women with infertility. Int J Reprod Contracept Obstet Gynecol. 2019;8(3):825. https://doi.org/10.18203/2320-1770.ijrcog20190498.

46. Le Donne M., Metro D., Alibrandi A., Papa M., Benvenga S. Effects of three treatment modalities (diet, myoinositol or myoinositol associated with D-chiro-inositol) on clinical and body composition outcomes in women with polycystic ovary syndrome. Eur Rev Med Pharmacol Sci. 2019;23(5):2293–2301. https://doi.org/10.26355/eurrev_201903_17278.

47. Tagliaferri V., Romualdi D., Immediata V., De Cicco S., Di Florio C., Lanzone A., Guido M. Metformin vs myoinositol: Which is better in obese polycystic ovary syndrome patients? A randomized controlled crossover study. Clin Endocrinol. 2017;86:725–730. https://doi.org/10.1111/cen.13304.

48. Greff D., Juhász A.E., Váncsa S., Váradi A., Sipos Z., Szinte J., Park S. Inositol is an effective and safe treatment in polycystic ovary syndrome: a systematic review and meta-analysis of randomized controlled trials. Reprod Biol Endocrinol. 2023;21(1):10. https://doi.org/10.1186/s12958-023-01055-z.

49. Fruzzetti F., Perini D., Russo M., Bucci F., Gadducci A. Comparison of two insulin sensitizers, metformin and myo-inositol, in women with polycystic ovary syndrome (PCOS). Gynecol Endocrinol. 2017;33(1):39–42. https://doi.org/10.1080/09513590.2016.1236078.

50. Facchinetti F., Orrù B., Grandi G., Unfer V. Short-term effects of metformin and myo-inositol in women with polycystic ovarian syndrome (PCOS): a meta-analysis of randomized clinical trials. Gynecol Endocrinol. 2019;35(3):198–206. https://doi.org/10.1080/09513590.2018.1540578.

51. Advani K., Batra M., Tajpuriya S., Gupta R., Saraswat A., Nagar H.D., Makwana L. et al. Efficacy of combination therapy of inositols, antioxidants and vitamins in obese and non-obese women with polycystic ovary syndrome: An observational study. J Obstet Gynaecol. 2020;40:96–101. https://doi.org/10.1080/01443615.2019.1604644.

52. Радзинский В.Е. (ред.). Прегравидарная подготовка: клинический протокол. М.: StatusPraesens; 2016. 80 с. Режим доступа: https://rpc03.ru/wp-content/uploads/2016/09/Pregravidarnaja-podgotovka.compressed.pdf.

53. Twigt J.M., Hammiche F., Sinclair K.D. Preconception folic acid use modulates estradiol and follicular responses to ovarian stimulation. J Clin Endocrinol Metab. 2011;96(2):E322-E329. https://doi.org/10.1210/jc.2010-1282.

54. Li D., Liu H.-X., Fang Y.-Y., Huo J.-N., Wu Q.-J., Wang T.-R., Ma X.-X. Hyperhomocysteinemia in polycystic ovary syndrome: decreased betainehomocysteine methyltransferase and cystathionine β-synthase-mediated homocysteine metabolism. Reproductive BioMedicine Online. 2018;37(2):234–241. https://doi.org/10.1016/j.rbmo.2018.05.008.

55. Kalyanaraman R., Pal L. A Narrative Review of Current Understanding of the Pathophysiology of Polycystic Ovary Syndrome: Focus on Plausible Relevance of Vitamin D. Int J Mol Sci. 2021;22(9):4905. https://doi.org/10.3390/ijms22094905.

56. Dravecká I., Figurová J., Javorský M., Petríková J., Vaľková M., Lazúrová I. The effect of alfacalcidiol and metformin on phenotype manifestations in women with polycystic ovary syndrome – a preliminary study. Physiol Res. 2016;65(5):815–822. https://doi.org/10.33549/physiolres.933266.

57. Tehrani H.G., Mostajeran F., Shahsavari S. The effect of calcium and vitamin D supplementation on menstrual cycle, body mass index and hyperandrogenism state of women with polycystic ovarian syndrome. J Res Med Sci. 2014;19:875–880. Available at: https://pubmed.ncbi.nlm.nih.gov/25535503.

58. Menichini D., Facchinetti F. Effects of vitamin D supplementation in women with polycystic ovary syndrome: A review. Gynecol Endocrinol. 2020;36:1–5. https://doi.org/10.1080/09513590.2019.1625881.

59. Guo S., Tal R., Jiang H., Yuan T., Liu Y. Vitamin D Supplementation Ameliorates Metabolic Dysfunction in Patients with PCOS: A Systematic Review of RCTs and Insight into the Underlying Mechanism. Int J Endocrinol. 2020;2020:7850816. https://doi.org/10.1155/2020/7850816.

60. Genazzani A.D., Prati A., Marchini F., Petrillo T., Napolitano A., Simoncini T. Differential insulin response to oral glucose tolerance test (OGTT) in overweight/obese polycystic ovary syndrome patients undergoing to myo-inositol (MYO), alpha lipoic acid (ALA), or combination of both. Gynecological Endocrinology. 2019;1:6. https://doi.org/10.1080/09513590.2019.1640200.

61. Lee W.J., Song K.H., Koh E.H., Won J.C., Kim H.S., Park H.S. et al. Alpha-lipoic acid increases insulin sensitivity by activating AMPK in skeletal muscle. Biochem Biophys Res Commun. 2005;332:885–891. https://doi.org/10.1016/j.bbrc.2005.05.035.

62. Shen Q.W., Zhu M.J., Tong J., Ren J., Du M. Ca2+/calmodulin-dependent protein kinase kinase is involved in AMP-activated protein kinase activation by alpha-lipoic acid in C2C12 myotubes. Am J Physiol Cell Physiol. 2007;293(4):1395–1403. https://doi.org/10.1152/ajpcell.00115.2007.


Рецензия

Для цитирования:


Чернуха Г.Е., Пронина В.А. Коррекция метаболической дисфункции как метод восстановления функции репродуктивной системы у женщин. Медицинский Совет. 2023;(5):90-97. https://doi.org/10.21518/ms2023-087

For citation:


Chernukha G.E., Pronina V.A. Metabolic dysfunction correction as a method of restoring the function of the reproductive system in women. Meditsinskiy sovet = Medical Council. 2023;(5):90-97. (In Russ.) https://doi.org/10.21518/ms2023-087

Просмотров: 108


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)