Prospects for prescription of urate-lowering therapy in patients with asymptomatic hyperuricemia and gout
https://doi.org/10.21518/ms2023-404
Abstract
Gout is a chronic disease characterized by attacks of arthritis, most often of the lower extremities, which develop under conditions of prolonged hyperuricemia caused by environmental and/or genetic factors. In the last decade, there has been an increase in the prevalence of both hyperuricemia and gout, which causes concern not only among rheumatologists, but also among doctors of related specialties. This is due to the fact that uric acid, deposited not only in joints, but also in other organs and tissues, contributes to the development of cardiovascular and metabolic diseases, as well as chronic kidney disease and osteoarthritis. It has been proven that even asymptomatic hyperuricemia, and not just hyperuricemia as a component of clinical gout, contributes to a more severe course of these comorbid pathologies. Probably, the maintenance of a chronic systemic inflammatory process, oxidative stress and the formation of endothelial dysfunction play a decisive role in the nosogenesis of polypathology. Accumulated scientific evidence suggests that achieving target levels of uric acid (less than 360 μmol/L in the case of atophus gout and less than 300 μmol/L in the case of tophi gout) leads to a reduction in the incidence of cerebral, cardiovascular, and renal events. Prescribing urate-lowering drugs to patients with hyperuricemia and at risk for type 2 diabetes mellitus and osteoarthritis also appears promising. Among the urate-lowering drugs registered in the Russian Federation, febuxostat shows the highest efficiency and safety, and also has a nephroprotective effect, which is especially important in patients with a decrease in glomerular filtration rate.
The article examines in detail the effect of febuxostat on various organs and systems in patients with gout and asymptomatic hyperuricemia.
Keywords
About the Authors
E. V. PaninaRussian Federation
Elena V. Panina - Junior Researcher, Laboratory of Microcrystalline Arthritis, Nasonova Research Institute of Rheumatology.
34а, Kashirskoe Shosse, Moscow, 115522
M. S. Eliseev
Russian Federation
Maxim S. Eliseev - Cand. Sci. (Med.), Head of the Laboratory of Microcrystalline Arthritis, Nasonova Research Institute of Rheumatology.
34а, Kashirskoe Shosse, Moscow, 115522
References
1. Nassonova VA, Barskova VG. Early diagnostic and treatment of gout - is scientifically based reguirements for improvement of labour and living prognosis of patients. Rheumatology Science and Practice. 2004;42(1):5–7. (In Russ.) https://doi.org/10.14412/1995-4484-2004-1374.
2. Dalbeth N, Choi HK, Joosten LAB, Khanna PP, Matsuo H, Perez-Ruiz F, Stamp LK. Gout. Nat Rev Dis Primers. 26;5(1):68. https://doi.org/10.1038/s41572-019-0124-x.
3. Eliseev MS. Hyperuricemia as the Factor of Kidney Damage and the Target of Therapy. Effective Pharmacotherapy. 2020;16(6):30–35. (In Russ.) https://doi.org/10.33978/2307-3586-2020-16-6-30-35.
4. Dalbeth N, House ME, Aati O, Tan P, Franklin C, Horne A et al. Urate crystal deposition in asymptomatic hyperuricaemia and symptomatic gout: a dual energy CT study. Ann Rheum Dis. 2015;74(5):908–911. https://doi.org/10.1136/annrheumdis-2014-20639.
5. Wang S, Pillinger MH, Krasnokutsky S, Barbour KE. The association between asymptomatic hyperuricemia and knee osteoarthritis: data from the third National Health and Nutrition Examination Survey. Osteoarthritis Cartilage. 2019;27(9):1301–1308. https://doi.org/10.1016/j.joca.2019.05.013.
6. Braga TT, Forni MF, Correa-Costa M, Ramos RN, Barbuto JA, Branco P et al. Soluble Uric Acid Activates the NLRP3 Inflammasome. Sci Rep. 2017;7:39884. https://doi.org/10.1038/srep39884.
7. McGill NW, Dieppe PA. Evidence for a promoter of urate crystal formation in gouty synovial fluid. Ann Rheum Dis. 1991;50(8):558–561. https://doi.org/10.1136/ard.50.8.558.
8. Meng Y, Horne CR, Samson AL, Dagley LF, Young SN, Sandow JJ et al. Human RIPK3 maintains MLKL in an inactive conformation prior to cell death by necroptosis. Nat Commun. 2021;12(1):6783. https://doi.org/10.1038/s41467-021-27032-x.
9. Nasonov EL. The role of interleukin 1 in the development of human diseases. Rheumatology Science and Practice. 2018;56(1):19–27. (In Russ.) https://doi.org/10.14412/1995-4484-2018-19-27.
10. Choi HK, Ford ES, Li C, Curhan G. Prevalence of the metabolic syndrome in patients with gout: the Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2007;57(1):109–115. https://doi.org/10.1002/art.22466.
11. Cicero AFG, Fogacci F, Giovannini M, Grandi E, Rosticci M, D’Addato S, Borghi C. Serum uric acid predicts incident metabolic syndrome in the elderly in an analysis of the Brisighella Heart Study. Sci Rep. 2018;8(1):11529. https://doi.org/10.1038/s41598-018-29955-w.
12. Maahs DM, Caramori L, Cherney DZ, Galecki AT, Gao C, Jalal D et al. Uric acid lowering to prevent kidney function loss in diabetes: The preventing early renal function loss (PERL) allopurinol study. Curr Diab Rep. 2013;13(4):550–559. https://doi.org/10.1007/s11892-013-0381-0.
13. Tsushima Y, Nishizawa H, Tochino Y, Nakatsuji H, Sekimoto R, Nagao H et al. Uric acid secretion from adipose tissue and its increase in obesity. J Biol Chem. 2013;288(38):27138–27149. https://doi.org/:10.1074/jbc.M113.48509.
14. Zhelyabina OV, Eliseev MS. Type 2 diabetes mellitus and gout. Rheumatology Science and Practice. 2021;59(5):599–607. (In Russ.) https://doi.org/10.47360/1995-4484-2021-599-607.
15. Yu KH, Kuo CF, Luo SF, See LC, Chou IJ, Chang HC, Chiou MJ. Risk of end-stage renal disease associated with gout: a nationwide population study. Arthritis Res Ther. 2012;14(2):R83. https://doi.org/10.1186/ar3806.
16. Eliseev MS, Denisov IS, Markelova EI, Glukhova SI, Nasonov EL. Independent risk factors for severe cardiovascular events in male patients with gout: Results of a 7-years prospective study. Terapevticheskii Arkhiv. 2017;89(5):10–19. (In Russ.) https://doi.org/10.17116/terarkh201789510-19.
17. Zhao G, Huang L, Song M, Song Y. Baseline serum uric acid level as a predictor of cardiovascular disease related mortality and all-cause mortality: a meta-analysis of prospective studies. Atherosclerosis. 2013;231(1):61–68. https://doi.org/10.1016/j.atherosclerosis.2013.08.023.
18. Tamariz L, Hernandez F, Bush A, Palacio A, Hare JM. Association between serum uric acid and atrial fibrillation: a systematic review and meta-analysis. Heart Rhythm. 2014;11(7):1102–1108. https://doi.org/10.1016/j.hrthm.2014.04.003.
19. Stamp L, Dalbeth N. Urate-lowering therapy for asymptomatic hyperuricaemia: A need for caution. Semin Arthritis Rheum. 2017;46(4):457–464. https://doi.org/10.1016/j.semarthrit.2016.07.015.
20. Eliseev MS. Commentaries on the updated American College of Rheumatology guidelines for the management of gout. Urate-lowering drugs (Part 1). Sovremennaya Revmatologiya. 2020;14(3):117–124. (In Russ.) https://doi.org/10.14412/1996-7012-2020-3-117-124.
21. Lu N, Rai SK, Terkeltaub R, Kim SC, Menendez ME, Choi HK. Racial disparities in the risk of Stevens-Johnson Syndrome and toxic epidermal necrolysis as urate-lowering drug adverse events in the United States. Semin Arthritis Rheum. 2016;46(2):253–258. https://doi.org/10.1016/j.semarthrit.2016.03.014.
22. Kim A, Kim Y, Kim GT, Ahn E, So MW, Lee SG. Comparison of persistence rates between allopurinol and febuxostat as first-line urate-lowering therapy in patients with gout: an 8-year retrospective cohort study. Clin Rheumatol. 2020;39(12):3769–3776. https://doi.org/10.1007/s10067-020-05161-w.
23. Lertnawapan R, Jatuworapruk K. Efficacy of febuxostat versus allopurinol and the predictors of achieving target serum urate in a cohort of Thai people with gout. Clin Rheumatol. 2021;40(1):255–262. https://doi.org/10.1007/s10067-020-05262-6.
24. Chikina M, Sheliabina O, Eliseev M. AB1045 quality of life in patients with gout taking urate-lowering drugs, depending on the achievement of the target level of serum uric acid. Annals of the Rheumatic Diseases. 2022;81:1645–1646. https://doi.org/10.1136/annrheumdis-2022-eular.1766.
25. White WB, Saag KG, Becker MA, Borer JS, Gorelick PB, Whelton A et al. Cardiovascular Safety of Febuxostat or Allopurinol in Patients with Gout. N Engl J Med. 2018;378(13):1200–1210. https://doi.org/10.1056/NEJMoa1710895.
26. Cicero AFG, Cosentino ER, Kuwabara M, Degli Esposti D, Borghi C. Effects of allopurinol and febuxostat on cardiovascular mortality in elderly heart failure patients. Intern Emerg Med. 2019(6):949–956. https://doi.org/10.1007/s11739-019-02070-y.
27. Konishi M, Kojima S, Uchiyama K, Yokota N, Tokutake E, Wakasa Y et al. Febuxostat for Cerebral and Cardiorenovascular Events Prevention Study (FREED) investigators. Effect of febuxostat on clinical outcomes in patients with hyperuricemia and cardiovascular disease. Int J Cardiol. 2022;349:127–133. https://doi.org/10.1016/j.ijcard.2021.11.076.
28. Mackenzie IS, Ford I, Nuki G, Hallas J, Hawkey CJ, Webster J et al. FAST Study Group. Long-term cardiovascular safety of febuxostat compared with allopurinol in patients with gout (FAST): a multicentre, prospective, randomised, open-label, non-inferiority trial. Lancet. 2020;396(10264):1745–1757. https://doi.org/10.1016/S0140-6736(20)32234-0.
29. Pérez Ruiz F, Richette P, Stack AG, Karra Gurunath R, García de Yébenes MJ, Carmona L. Failure to reach uric acid target of < 0.36 mmol/L in hyperuricaemia of gout is associated with elevated total and cardiovascular mortality. RMD Open. 2019;5(2):e001015. https://doi.org/10.1136/rmdopen-2019-001015.
30. Barazani SH, Chi WW, Pyzik R, Chang H, Jacobi A, O’Donnell T et al. Quantification of uric acid in vasculature of patients with gout using dual-energy computed tomography. World J Radiol. 2020;12(8):184–194. https://doi.org/10.4329/wjr.v12.i8.184.
31. Klauser AS, Halpern EJ, Strobl S, Gruber J, Feuchtner G, Bellmann-Weiler R et al. Dual-Energy Computed Tomography Detection of Cardiovascular Monosodium Urate Deposits in Patients With Gout. JAMA Cardiol. 2019;4(10):1019–1028. https://doi.org/10.1001/jamacardio.2019.3201.
32. Fang J, Alderman MH. Serum uric acid and cardiovascular mortality the NHANES I epidemiologic follow-up study, 1971–1992. National Health and Nutrition Examination Survey. JAMA. 2000;283(18):2404–2410. https://doi.org/10.1001/jama.283.18.2404.
33. Yu MA, Sánchez-Lozada LG, Johnson RJ, Kang DH. Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J Hypertens. 2010;28(6):1234–1242. https://pubmed.ncbi.nlm.nih.gov/20486275.
34. Zheliabina OV, Eliseev MS, Glukhova SI, Nasonov EL. Contributing factors of diabetes mellitus among patients with gout (results of the long-term prospective study). Rheumatology Science and Practice. 2022;60(3):374–380. (In Russ.) https://doi.org/10.47360/1995-4484-2022-374-380.
35. Choi S, Voskanian N, Ramos J, Nguyen KHY. Tophaceous Gout in the Pancreas: Case Reports and Review of the Literature. Case Rep Rheumatol. 2022;2022:3671627. https://doi.org/10.1155/2022/3671627.
36. Eliseev MS, Novikova AM. Comorbidity in gout and hyperuricemia: prevalence, causes, prospects of urate lowering therapy. Terapevticheskii Arkhiv. 2019;91(5): 120–128. (In Russ.) https://doi.org/10.26442/00403660.2019.05.000232.
37. Schumacher HRJr, Becker MA, Wortmann RL, Macdonald PA, Hunt B, Streit J et al. Effects of febuxostat versus allopurinol and placebo in reducing serum urate in subjects with hyperuricemia and gout: a 28-week, phase III, randomized, double-blind, parallel-group trial. Arthritis Rheum. 2008;59(11):1540–1548. https://doi.org/10.1002/art.24209.
38. Tsuruta Y, Mochizuki T, Moriyama T, Itabashi M, Takei T, Tsuchiya K, Nitta K. Switching from allopurinol to febuxostat for the treatment of hyperuricemia and renal function in patients with chronic kidney disease. Clin Rheumatol. 2014;33(11):1643–1648. https://doi.org/10.1007/s10067-014-2745-5.
39. Eliseev MS, Zhelyabina OV, Chikina MN, Thakokov MM. Febuxostat efficacy in patients with gout depending on kidney function. RMJ. 2022;6(3):140–147. (In Russ.) https://doi.org/10.32364/2587-6821-2022-6-3-140-147.
40. Yeliseyev MS, Chikina MN, Zhelyabina OV. The Effect of Febuxostat on the Probability of Reaching the Target Serum Uric Acid Level and Renal Function in Patients with Gout: Results of a Prospective Observational Study. Effective Pharmacotherapy. 2023;19(29):16–21. https://doi.org/10.33978/2307-3586-2023-19-29-16-21.
41. Liu X, Qiu Y, Li D, Tan J, Liang X, Qin W. Effectiveness of Drug Treatments for Lowering Uric Acid on Renal Function in Patients With Chronic Kidney Disease and Hyperuricemia: A Network Meta-Analysis of Randomized Controlled Trials. Front Pharmacol. 2021;12:690557. https://doi.org/10.3389/fphar.2021.690557.
42. Pascual E, Addadi L, Andrés M, Sivera F. Mechanisms of crystal formation in gout-a structural approach. Nat Rev Rheumatol. 2015;11(12):725–730. https://doi.org/10.1038/nrrheum.2015.125.
43. Cheremushkina EV, Eliseev MS. Hyperuricemia and gout: effects on bone and articular cartilage (literature review). Obesity and Мetabolism. 2022;19(3):348–357. (In Russ.) https://doi.org/10.14341/omet12894.
44. Aibibula Z, Ailixiding M, Iwata M, Piao J, Hara Y, Okawa A, Asou Y. Xanthine oxidoreductase activation is implicated in the onset of metabolic arthritis. Biochem Biophys Res Commun. 2016;472(1):26–32. https://doi.org/10.1016/j.bbrc.2016.02.039.
Review
For citations:
Panina EV, Eliseev MS. Prospects for prescription of urate-lowering therapy in patients with asymptomatic hyperuricemia and gout. Meditsinskiy sovet = Medical Council. 2023;(21):128-134. (In Russ.) https://doi.org/10.21518/ms2023-404