Preview

Медицинский Совет

Расширенный поиск

Энтректиниб в лечении ROS1-позитивного рака легкого

https://doi.org/10.21518/ms2023-421

Аннотация

Возможности в лечении больных немелкоклеточным раком легкого постоянно расширяются – благодаря технологии высокопроизводительного секвенирования мы открываем новые мишени в опухоли для лекарственного воздействия, как следствие, появляются новые таргетные препараты, некоторые из них имеют несколько точек приложения. Многоцелевые препараты обладают рядом преимуществ и поэтому стали основным направлением разработки лекарств. Энтректиниб – это пероральный низкомолекулярный ингибитор мультикиназного действия, блокирующий сразу три мишени – рецепторы тирозинкиназ ROS1, NTRK1/2/3 и ALK, в 2023 г. был одобрен Минздравом РФ для лечения взрослых пациентов с ROS1-положительным метастатическим немелкоклеточным раком легкого. Эту форму рака легкого относят к редким орфанным заболеваниям. Встречается, как правило, у людей более молодого возраста (около 50 лет), чаще у женщин и некурящих. До недавнего времени мы располагали единственным активным таргетным препаратом – кризотинибом. Он обеспечивал достаточно высокую непосредственную эффективность и длительный контроль за болезнью. Однако его интракраниальная активность проспективно не оценивалась, а ретроспективный анализ показал скромные результаты. От своего конкурента энтректиниб отличает высокая интракраниальная активность, а, как известно, метастатическое поражение головного мозга у больных с активирующими мутациями встречается довольно часто. При сопоставимых показателях объективного ответа, его длительности и времени до прогрессирования энтректиниб обеспечивает более высокий уровень интракраниального контроля и снижает риски прогрессирования в ЦНС у больных, не имевших метастазов в головной мозг на начало терапии. Энтректиниб демонстрирует хорошую переносимость.

Об авторах

Е. В. Реутова
Национальный медицинский исследовательский центр онкологии имени Н.Н. Блохина
Россия

Реутова Елена Валерьевна - к.м.н., старший научный сотрудник отделения противоопухолевой лекарственной терапии №3.

115478, Москва, Каширское шоссе, д. 24



К. К. Лактионов
Национальный медицинский исследовательский центр онкологии имени Н.Н. Блохина; Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
Россия

Лактионов Константин Константинович - д.м.н., заведующий отделением противоопухолевой лекарственной терапии №3, НМИЦ онкологии им. Н.Н. Блохина; профессор кафедры онкологии и лучевой терапии лечебного факультета, РНИМУ им. Н.И. Пирогова.

115478, Москва, Каширское шоссе, д. 24; 117997, Москва, ул. Островитянова, д. 1



Список литературы

1. Davare MA, Henderson JJ, Agarwal A, Wagner JP, Iyer SR, Shah N et al. Rare but recurrent ROS1 fusions resulting from chromosome 6q22 microdeletions are targetable oncogenes in glioma. Clin Cancer Res. 2018;24(24):6471–6482. https://doi.org/10.1158/1078-0432.CCR-18-1052.

2. Saborowski A, Saborowski M, Davare MA, Druker BJ, Klimstra DS, Lowe SW. Mouse model of intrahepatic cholangiocarcinoma validates FIG-ROS as a potent fusion oncogene and therapeutic target. Proc Natl Acad Sci USA. 2013;110(48):19513–19518. https://doi.org/10.1073/pnas.1311707110.

3. Neel DS, Allegakoen DV, Olivas V, Mayekar MK, Hemmati G, Chatterjee N et al. Differential subcellular localization regulates oncogenic signaling by ROS1 kinase fusion proteins. Cancer Res. 2019;79(3):546–556. https://doi.org/10.1158/0008-5472.CAN-18-1492.

4. Davies KD, Le AT, Theodoro MF, Skokan MC, Aisner DL, Berge EM et al. Identifying and targeting ROS1 gene fusions in non-small cell lung cancer. Clin Cancer Res. 2012;18(17):4570–457. https://doi.org/10.1158/1078-0432.CCR-12-0550.

5. Davies KD, Doebele RC. Molecular pathways: ROS1 usion proteins in cancer. Clin Cancer Res. 2013;19(15):4040–4045. https://doi.org/10.1158/1078-0432.CCR-12-2851.

6. Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, McDonald NT et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol. 2012;30(8):863–870. https://doi.org/10.1200/JCO.2011.35.6345.

7. Dugay F, Llamas-Gutierrez F, Gournay M, Medane S, Mazet F, Chiforeanu DC et al. Clinicopathological characteristics of ROS1- and RET-rearranged NSCLC in caucasian patients: Data from a cohort of 713 non-squamous NSCLC lacking KRAS/EGFR/HER2/BRAF/PIK3CA/ALK alterations. Oncotarget. 2017;8(32):53336–53351. https://doi.org/10.18632/oncotarget.18408.

8. Gainor JF, Tseng D, Yoda S, Dagogo-Jack I, Friboulet L, Lin JJ et al. Patterns of Metastatic Spread and Mechanisms of Resistance to Crizotinib in ROS1- Positive Non-Small-Cell Lung Cancer. JCO Precis Oncol. 2017;2017:PO.17.00063. https://doi.org/10.1200/PO.17.00063.

9. Mazières J, Zalcman G, Crinò L, Biondani P, Barlesi F, Filleron T et al. Crizotinib therapy for advanced lung adenocarcinoma and a ROS1 rearrangement: results from the EUROS1 cohort. J Clin Oncol. 2015;33(9):992–999. https://doi.org/10.1200/JCO.2014.58.3302.

10. Patil T, Smith DE, Bunn PA, Aisner DL, Le AT, Hancock M et al. The Incidence of Brain Metastases in Stage IV ROS1-Rearranged Non-Small Cell Lung Cancer and Rate of Central Nervous System Progression on Crizotinib. J Thorac Oncol. 2018;13(11):1717–1726. https://doi.org/10.1016/j.jtho.2018.07.001.

11. Wu YL, Yang JC, Kim DW, Lu S, Zhou J, Seto T et al. Phase II Study of Crizotinib in East Asian Patients With ROS1-Positive Advanced Non-Small-Cell Lung Cancer. J Clin Oncol. 2018;36(14):1405–1411. https://doi.org/10.1200/JCO.2017.75.5587.

12. Shaw AT, Riely GJ, Bang YJ, Kim DW, Camidge DR, Solomon BJ et al. Crizotinib in ROS1-rearranged advanced non-small-cell lung cancer (NSCLC): updated results, including overall survival, from PROFILE 1001. Ann Oncol. 2019;30(7):1121–1126. https://doi.org/10.1093/annonc/mdz131.

13. Michels S, Massutí B, Schildhaus HU, Franklin J, Sebastian M, Felip E et al. Safety and Efficacy of Crizotinib in Patients With Advanced or Metastatic ROS1-Rearranged Lung Cancer (EUROCROSS): A European Phase II Clinical Trial. J Thorac Oncol. 2019;14(7):1266–1276. https://doi.org/10.1016/j.jtho.2019.03.020.

14. Costa DB, Kobayashi S, Pandya SS, Yeo WL, Shen Z, Tan W, Wilner KD. CSF concentration of the anaplastic lymphoma kinase inhibitor crizotinib. J Clin Oncol. 2011;29(15):e443–445. https://doi.org/10.1200/JCO.2010.34.1313.

15. Jiang Q, Li M, Li H, Chen L. Entrectinib, a new multi-target inhibitor for cancer therapy. Biomed Pharmacother. 2022;150:112974. https://doi.org/10.1016/j.biopha.2022.112974.

16. Fischer H, Ullah M, de la Cruz CC, Hunsaker T, Senn C, Wirz T et al. Entrectinib, a TRK/ROS1 inhibitor with anti-CNS tumor activity: differentiation from other inhibitors in its class due to weak interaction with P-glycoprotein. Neuro Oncol. 2020;22(6):819–829. https://doi.org/10.1093/neuonc/noaa052.

17. Ardini E, Menichincheri M, Banfi P, Bosotti R, De Ponti C, Pulci R et al. Entrectinib, a Pan-TRK, ROS1, and ALK Inhibitor with Activity in Multiple Molecularly Defined Cancer Indications. Mol Cancer Ther. 2016;15(4):628–639. https://doi.org/10.1158/1535-7163.MCT-15-0758.

18. Menichincheri M, Ardini E, Magnaghi P, Avanzi N, Banfi P, Bossi R et al. Discovery of Entrectinib: A New 3-Aminoindazole As a Potent Anaplastic Lymphoma Kinase (ALK), c-ros Oncogene 1 Kinase (ROS1), and Pan-Tropomyosin Receptor Kinases (Pan-TRKs) inhibitor. J Med Chem. 2016;59(7):3392–3408. https://doi.org/10.1021/acs.jmedchem.6b00064.

19. Iyer R, Wehrmann L, Golden RL, Naraparaju K, Croucher JL, MacFarland SP et al. Entrectinib is a potent inhibitor of Trk-driven neuroblastomas in a xenograft mouse model. Cancer Lett. 2016;372(2):179–186. https://doi.org/10.1016/j.canlet.2016.01.018.

20. Rolfo C, Ruiz R, Giovannetti E, Gil-Bazo I, Russo A, Passiglia F et al. Entrectinib: a potent new TRK, ROS1, and ALK inhibitor. Expert Opin Investig Drugs. 2015;24(11):1493–1500. https://doi.org/10.1517/13543784.2015.1096344.

21. Harada G, Santini FC, Wilhelm C, Drilon A. NTRK fusions in lung cancer: From biology to therapy. Lung Cancer. 2021;161:108–113. https://doi.org/10.1016/j.lungcan.2021.09.005.

22. Drilon A, Siena S, Dziadziuszko R, Barlesi F, Krebs MG, Shaw AT et al. Entrectinib in ROS1 fusion-positive non-small-cell lung cancer: integrated analysis of three phase 1-2 trials. Lancet Oncol. 2020;21(2):261–270. https://doi.org/10.1016/S1470-2045(19)30690-4.

23. Dziadziuszko R, Krebs MG, De Braud F, Siena S, Drilon A, Doebele RC et al. Updated Integrated Analysis of the Efficacy and Safety of Entrectinib in Locally Advanced or Metastatic ROS1 Fusion-Positive Non-Small-Cell Lung Cancer. J Clin Oncol. 2021;39(11):1253–1263. https://doi.org/10.1200/JCO.20.03025.

24. Drilon A, Chiu C-H, Fan Y, Cho BC, Lu S, Ahn M-J et al. Long-Term Efficacy and Safety of Entrectinib in ROS1 Fusion–Positive NSCLC. JTO Clin Res Rep. 2022;3(6):100332. https://doi.org/10.1016/j.jtocrr.2022.100332.

25. Lim SM, Kim HR, Lee JS, Lee KH, Lee YG, Min YJ et al. Open-Label, Multicenter, Phase II Study of Ceritinib in Patients With Non-Small-Cell Lung Cancer Harboring ROS1 Rearrangement. J Clin Oncol. 2017;35(23):2613–2618. https://doi.org/10.1200/JCO.2016.71.3701.

26. Shaw AT, Solomon BJ, Chiari R, Riely GJ, Besse B, Soo RA et al. Lorlatinib in advanced ROS1-positive non-small-cell lung cancer: a multicentre, open-label, single-arm, phase 1-2 trial. Lancet Oncol. 2019;20(12):1691–1701. https://doi.org/10.1016/S1470-2045(19)30655-2.

27. Doebele RC, Lin J, Nagasaka M, Baik C, Van Der Wekken A et al. MA11.07 Phase 1/2 TRIDENT-1 Study of Repotrectinib in Patients with ROS1+ or NTRK+ Advanced Solid Tumors. J Thor Oncol. 2021;16(3):S174–175. https://doi.org/10.1016/j.jtho.2021.01.251.

28. Ou SI, Fujiwara Y, Shaw AT, Yamamoto N, Nakagawa K, Fan F et al. Efficacy of Taletrectinib (AB-106/DS-6051b) in ROS1+ NSCLC: An Updated Pooled Analysis of U.S. and Japan Phase 1 Studies. JTO Clin Res Rep. 2020;2(1):100108. https://doi.org/10.1016/j.jtocrr.2020.100108.

29. Rodrigus P, de Brouwer P, Raaymakers E. Brain metastases and non-small cell lung cancer. Prognostic factors and correlation with survival after irradiation. Lung Cancer. 2001;32(2):129–136. https://doi.org/10.1016/s0169-5002(00)00227-0.

30. Dziadziuszko R, Hung T, Wang K, Choeurng V, Drilon A, Doebele RC et al. Pre- and post-treatment blood-based genomic landscape of patients with ROS1 or NTRK fusion-positive solid tumours treated with entrectinib. Mol Oncol. 2022;16(10):2000–2014. https://doi.org/10.1002/1878-0261.13214.

31. Liu D, Flory J, Lin A, Offin M, Falcon CJ, Murciano-Goroff YR et al. Characterization of on-target adverse events caused by TRK inhibitor therapy. Ann Oncol. 2020;31(9):1207–1215. https://doi.org/10.1016/j.annonc.2020.05.006.

32. Drilon A. TRK inhibitors in TRK fusion-positive cancers. Ann Oncol. 2019;30(Suppl. 8):viii23–viii30. https://doi.org/10.1093/annonc/mdz282.

33. Sartore-Bianchi A, Pizzutilo EG, Marrapese G, Tosi F, Cerea G, Siena S. Entrectinib for the treatment of metastatic NSCLC: safety and efficacy. Expert Rev Anticancer Ther. 2020;20(5):333–341. https://doi.org/10.1080/14737140.2020.1747439.

34. Лактионов КК, Артамонова ЕВ, Бредер ВВ, Горбунова ВА, Демидова ИА, Деньгина НВ и др. Практические рекомендации по лекарственному лечению немелкоклеточного рака легкого. Злокачественные опухоли. 2022;12(3s2-1):41–59. https://doi.org/10.18027/2224-5057-2022-12-3s2-41-59.


Рецензия

Для цитирования:


Реутова ЕВ, Лактионов КК. Энтректиниб в лечении ROS1-позитивного рака легкого. Медицинский Совет. 2023;(22):57-62. https://doi.org/10.21518/ms2023-421

For citation:


Reutova EV, Laktionov KK. Entrectinib in the treatment of ROS1-positive lung cancer. Meditsinskiy sovet = Medical Council. 2023;(22):57-62. (In Russ.) https://doi.org/10.21518/ms2023-421

Просмотров: 287


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)