Preview

Медицинский Совет

Расширенный поиск

Метаболическая активность микробиоты толстой кишки у пациентов с ожирением (пилотное исследование)

https://doi.org/10.21518/ms2024-136

Аннотация

Введение. Глобальное экономическое и социальное бремя ожирения требует четкого понимания причин и основных факторов, способствующих его развитию, что позволит разработать и эффективно реализовать потенциальные терапевтические пути для непосредственного воздействия на патологию. В последнее время в патогенезе ожирения все большее значение придается состоянию и разнообразию кишечной микробиоты, основное взаимодействие которой с человеком осуществляется через короткоцепочечные жирные кислоты (КЦЖК) – биологически активные вещества, образующиеся при анаэробной ферментации неперевариваемых углеводов.

Цель. Оценить метаболическую активность микробиоты толстой кишки по количеству и доле уровней короткоцепочечных жирных кислот у молодых пациентов с ожирением с учетом степени ожирения в сравнении со здоровыми лицами.

Материалы и методы. В исследовании приняли участие 87 пациентов с ожирением и 31 человек с нормальной массой тела. Все участники исследования соответствовали критериям включения и подписали информированное согласие. Помимо заполнения анкеты, специально разработанной под цели и задачи данного исследования, проведены антропометрические измерения и определен уровень КЦЖК в фекалиях методом газожидкостной хроматографии на оборудовании «Хромос» ГХ-1000 в независимой лаборатории INVITRO.

Результаты. У молодых пациентов с ожирением отмечается более высокая концентрация КЦЖК и изоформ КЦЖК в фекалиях, по сравнению со здоровыми лицами, при этом статистически значимо выше в группе пациентов с ИМТ более 40 кг/м2. Доля ацетата была статистически значимо выше в группе пациентов с нормальным весом, в то время как доля пропионата была выше в группе пациентов с ожирением. В отношении доли бутирата статистических различий получено не было. Кроме того, были выявлены ассоциации КЦЖК с антропометрическими параметрами.

Выводы. Результаты исследования подтверждают возможную роль КЦЖК в патогенезе ожирения.

Об авторах

Т. С. Душина
Тюменский государственный медицинский университет
Россия

Душина Татьяна Сергеевна, ассистент кафедры терапии с курсами эндокринологии, функциональной и ультразвуковой диагностики Института клинической медицины, Тюменский государственный медицинский университет

625023, Тюмень, ул. Одесская, д. 54



Л. А. Суплотова
Тюменский государственный медицинский университет
Россия

Суплотова Людмила Александровна, д.м.н., профессор, заведующая курсом эндокринологии кафедры терапии

625023, Тюмень, ул. Одесская, д. 54



С. М. Кляшев
Тюменский государственный медицинский университет
Россия

Кляшев Сергей Михайлович, д.м.н., профессор, заведующий кафедрой терапии с курсами эндокринологии, функциональной и ультразвуковой диагностики Института клинической медицины

625023, Тюмень, ул. Одесская, д. 54



Н. Н. Федосеева
Тюменский государственный медицинский университет
Россия

Федосеева Наталья Николаевна, к.м.н., доцент кафедры терапии с курсами эндокринологии, функциональной и ультразвуковой диагностики Института клинической медицины

625023, Тюмень, ул. Одесская, д. 54



Список литературы

1. Blüher M. Obesity: Global epidemiology and pathogenesis. Nature Reviews Endocrinology. 2019;15:288–298. https://doi.org/10.1038/s41574-019-0176-8.

2. Amiri P, Hosseini SA, Ghaffari S, Tutunchi H, Ghaffari S, Mosharkesh E et al. Role of Butyrate, a Gut Microbiota Derived Metabolite, in Cardiovascular Diseases: A comprehensive narrative review. Front Pharmacol. 2022;12:837509. https://doi.org/10.3389/fphar.2021.837509.

3. Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G et al. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front Immunol. 2019;10:277. https://doi.org/10.3389/fimmu.2019.00277.

4. Luu M, Visekruna A. Short-chain fatty acids: Bacterial messengers modulating the immunometabolism of T cells. Eur J Immunol. 2019;49(6):842–848. https://doi.org/10.1002/eji.201848009.

5. Deleu S, Machiels K, Raes J, Verbeke K, Vermeire S. Short chain fatty acids and its producing organisms: An overlooked therapy for IBD? EBioMedicine. 2021;66:103293. https://doi.org/10.1016/j.ebiom.2021.103293.

6. Miranda VPN, Dos Santos Amorim PR, Bastos RR, de Faria ER, de Castro Moreira ME, do Carmo Castro Franceschini S et al. Abundance of Gut Microbiota, Concentration of Short-Chain Fatty Acids, and Inflammatory Markers Associated with Elevated Body Fat, Overweight, and Obesity in Female Adolescents. Mediators Inflamm. 2019:7346863. https://doi.org/10.1155/2019/7346863.

7. Курмангулов АА, Дороднева ЕФ, Исакова ДН. Функциональная активность микробиоты кишечника при метаболическом синдроме. Ожирение и метаболизм. 2016;13(1):16–19. https://doi.org/10.14341/omet2016116-19.

8. Blakeney BA, Crowe MS, Mahavadi S, Murthy KS, Grider JR. Branched ShortChain Fatty Acid Isovaleric Acid Causes Colonic Smooth Muscle Relaxation via cAMP/PKA Pathway. Dig Dis Sci. 2019;64:1171–1181. https://doi.org/10.1007/s10620-018-5417-5.

9. Canfora EE, Meex RCR, Venema K, Blaak EE. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol. 2019;15:261–273. https://doi.org/10.1038/s41574-019-0156-z.

10. Diether NE, Willing BP. Microbial Fermentation of Dietary Protein: An Important Factor in Diet-Microbe-Host Interaction. Microorganisms. 2019;7(1):19. https://doi.org/10.3390/microorganisms7010019.

11. Kim KN, Yao Y, Ju SY. Short Chain Fatty Acids and Fecal Microbiota Abundance in Humans with Obesity: A Systematic Review and MetaAnalysis. Nutrients. 2019;11(10):2512. https://doi.org/10.3390/nu11102512.

12. Murugesan S, Ulloa-Martínez M, Martínez-Rojano H, Galván-Rodríguez FM, Miranda-Brito C, Romano MC et al. Study of the diversity and short-chain fatty acids production by the bacterial community in overweight and obese Mexican children. Eur J Clin Microbiol Infect Dis. 2015;34(7):1337–1346. https://doi.org/10.1007/s10096-015-2355-4.

13. Hosseinkhani F, Heinken A, Thiele I, Lindenburg PW, Harms AC, Hankemeier T. The contribution of gut bacterial metabolites in the human immune signaling pathway of non-communicable diseases. Gut Microbes. 2021;13(1):1–22. https://doi.org/10.1080/19490976.2021.1882927.

14. Mishra SP, Karunakar P, Taraphder S, Yadav H. Free Fatty Acid Receptors 2 and 3 as Microbial Metabolite Sensors to Shape Host Health: Pharmacophysiological View. Biomedicines. 2020;8(6):154. https://doi.org/10.3390/biomedicines8060154.

15. Wiciński M, Gębalski J, Gołębiewski J, Malinowski B. Probiotics for the treatment of overweight and obesity in humans-A review of clinical trials. Microorganisms. 2020;8(8):1148. https://doi.org/10.3390/microorganisms8081148.

16. He J, Zhang P, Shen L, Niu L, Tan Y, Chen L et al. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. Int J Mol Sci. 2020;21(17):6356. https://doi.org/10.3390/ijms21176356.

17. Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol. 2020;11:25. https://doi.org/10.3389/fendo.2020.00025.

18. Koliaki C, Liatis S, Dalamaga M, Kokkinos A. The Implication of Gut Hormones in the Regulation of Energy Homeostasis and Their Role in the Pathophysiology of Obesity. Curr Obes Rep. 2020;9(3):255–271. https://doi.org/10.1007/s13679-020-00396-9.

19. Alhabeeb H, AlFaiz A, Kutbi E, AlShahrani D, Alsuhail A, AlRajhi S et al. Gut Hormones in Health and Obesity: The Upcoming Role of Short Chain Fatty Acids. Nutrients. 2021;13(2):481. https://doi.org/10.3390/nu13020481.

20. Yao H, Fan C, Fan X, Lu Y, Wang Y, Wang R et al. Effects of gut microbiota on leptin expression and body weight are lessened by high-fat diet in mice. Br J Nutr. 2020;124(4):396–406. https://doi.org/10.1017/S0007114520001117.

21. Yao H, Fan C, Lu Y, Fan X, Xia L, Li P et al. Alteration of gut microbiota affects expression of adiponectin and resistin through modifying DNA methylation in high-fat diet-induced obese mice. Genes Nutr. 2020;15(1):12. https://doi.org/10.1186/s12263-020-00671-3.

22. Rekha K, Venkidasamy B, Samynathan R, Nagella P, Rebezov M, Khayrullin M et al. Short-chain fatty acid: An updated review on signaling, metabolism, and therapeutic effects. Crit Rev Food Sci Nutr. 2024;64(9):2461–2489. https://doi.org/10.1080/10408398.2022.2124231.

23. Martínez-Cuesta MC, Del Campo R, Garriga-García M, Peláez C, Requena T. Taxonomic Characterization and Short-Chain Fatty Acids Production of the Obese Microbiota. Front Cell Infect Microbiol. 2021;11:598093. https://doi.org/10.3389/fcimb.2021.598093.

24. Petraroli M, Castellone E, Patianna V, Esposito S. Gut Microbiota and Obesity in Adults and Children: The State of the Art. Front Pediatr. 2021;9:657020. https://doi.org/10.3389/fped.2021.657020.

25. De la Cuesta-Zuluaga J, Mueller NT, Álvarez-Quintero R, Velásquez-Mejía EP, Sierra JA, Corrales-Agudelo V et al. Higher Fecal Short-Chain Fatty Acid Levels Are Associated with Gut Microbiome Dysbiosis, Obesity, Hypertension and Cardiometabolic Disease Risk Factors. Nutrients. 2018;11(1):51. https://doi.org/10.3390/nu11010051.

26. Wang Y, Wang H, Howard AG, Meyer KA, Tsilimigras MCB, Avery CL et al. Circulating Short-Chain Fatty Acids Are Positively Associated with Adiposity Measures in Chinese Adults. Nutrients. 2020;12(7):2127. https://doi.org/10.3390/nu12072127.

27. Müller M, Hernández MAG, Goossens GH, Reijnders D, Holst JJ, Jocken JWE et al. Circulating but not faecal short-chain fatty acids are related to insulin sensitivity, lipolysis and GLP-1 concentrations in humans. Sci Rep. 2019;9(1):12515. https://doi.org/10.1038/s41598-019-48775-0.

28. Ferrer-Picón E, Dotti I, Corraliza AM, Mayorgas A, Esteller M, Perales JC et al. Intestinal Inflammation Modulates the Epithelial Response to Butyrate in Patients With Inflammatory Bowel Disease. Inflamm Bowel Dis. 2020;26(1):43–55. https://doi.org/10.1093/ibd/izz119.

29. Rahat-Rozenbloom S, Fernandes J, Gloor GB, Wolever TM. Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. Int J Obes (Lond). 2014;38(12):1525–1531. https://doi.org/10.1038/ijo.2014.46.

30. Lin HV, Frassetto A, Kowalik EJJr, Nawrocki AR, Lu MM, Kosinski JR et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE. 2012;7(4):e35240. https://doi.org/10.1371/journal.pone.0035240.

31. Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SE et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015;64(11):1744–1754. https://doi.org/10.1136/gutjnl-2014-307913.

32. Bonomo RR, Cook TM, Gavini CK, White CR, Jones JR, Bovo E et al. Fecal transplantation and butyrate improve neuropathic pain, modify immune cell profile, and gene expression in the PNS of obese mice. Proc Natl Acad Sci USA. 2020;117(42):26482–26493. https://doi.org/10.1073/pnas.2006065117.

33. Yin XQ, An YX, Yu CG, Ke J, Zhao D, Yu K. The Association Between Fecal Short-Chain Fatty Acids, Gut Microbiota, and Visceral Fat in Monozygotic Twin Pairs. Diabetes Metab Syndr Obes. 2022;15:359–368. https://doi.org/10.2147/DMSO.S338113.

34. Rios-Covian D, González S, Nogacka AM, Arboleya S, Salazar N, Gueimonde M, de Los Reyes-Gavilán CG. An Overview on Fecal Branched Short-Chain Fatty Acids Along Human Life and as Related With Body Mass Index: Associated Dietary and Anthropometric Factors. Front Microbiol. 2020;11:973. https://doi.org/10.3389/fmicb.2020.00973.

35. Fan L, Xia Y, Wang Y, Han D, Liu Y, Li J et al. Gut microbiota bridges dietary nutrients and host immunity. Sci China Life Sci. 2023;66(11):2466–2514. https://doi.org/10.1007/s11427-023-2346-1.

36. Gozdzik P, Magkos F, Sledzinski T, Mika A. Monomethyl branched-chain fatty acids: Health effects and biological mechanisms. Prog Lipid Res. 2023;90:101226. https://doi.org/10.1016/j.plipres.2023.101226.

37. Ramos Meyers G, Samouda H, Bohn T. Short Chain Fatty Acid Metabolism in Relation to Gut Microbiota and Genetic Variability. Nutrients. 2022;14(24):5361. https://doi.org/10.3390/nu14245361.

38. Ezzine C, Loison L, Montbrion N, Bôle-Feysot C, Déchelotte P, Coëffier M et al. Fatty acids produced by the gut microbiota dampen host inflammatory responses by modulating intestinal SUMOylation. Gut Microbes. 2022;14(1):2108280. https://doi.org/10.1080/19490976.2022.2108280.

39. Ran-Ressler RR, Khailova L, Arganbright KM, Adkins-Rieck CK, Jouni ZE, Koren O et al. Branched chain fatty acids reduce the incidence of necrotizing enterocolitis and alter gastrointestinal microbial ecology in a neonatal rat model. PLoS ONE. 2011;6(12):e29032. https://doi.org/10.1371/journal.pone.0029032.

40. Van den Abbeele P, Ghyselinck J, Marzorati M, Koch AM, Lambert W, Michiels J et al. The Effect of Amino Acids on Production of SCFA and bCFA by Members of the Porcine Colonic Microbiota. Microorganisms. 2022;10(4):762. https://doi.org/10.3390/microorganisms10040762.

41. Gasaly N, Hermoso MA, Gotteland M. Butyrate and the Fine-Tuning of Colonic Homeostasis: Implication for Inflammatory Bowel Diseases. Int J Mol Sci. 2021;22(6):3061. https://doi.org/10.3390/ijms22063061.

42. Mahawar KK, Sharples AJ. Contribution of Malabsorption to Weight Loss After Roux-en-Y Gastric Bypass: a Systematic Review. Obes Surg. 2017;27(8):2194–2206. https://doi.org/10.1007/s11695-017-2762-y.

43. Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A, Võsa U et al. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat Genet. 2019;51(4):600–605. https://doi.org/10.1038/s41588-019-0350-x.

44. Ecklu-Mensah G, Choo-Kang C, Maseng MG, Donato S, Bovet P, Viswanathan B et al. Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: the METS-microbiome study. Nat Commun. 2023;14(1):5160. https://doi.org/10.1038/s41467-023-40874-x.


Рецензия

Для цитирования:


Душина ТС, Суплотова ЛА, Кляшев СМ, Федосеева НН. Метаболическая активность микробиоты толстой кишки у пациентов с ожирением (пилотное исследование). Медицинский Совет. 2024;(6):217-225. https://doi.org/10.21518/ms2024-136

For citation:


Dushina TS, Suplotova LA, Klyashev SM, Fedoseeva NN. Metabolic activity of the colon microbiota in patients with obesity (pilot research). Meditsinskiy sovet = Medical Council. 2024;(6):217-225. (In Russ.) https://doi.org/10.21518/ms2024-136

Просмотров: 231


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)