Preview

Медицинский Совет

Расширенный поиск

Ассоциация между кишечной микробиотой и дисфункцией щитовидной железы

https://doi.org/10.21518/ms2024-073.

Аннотация

Статья посвящена современным представлениям о потенциальной роли микробиоты в развитии патологии щитовидной железы. Кишечная микробиота играет одну из главных ролей как в формировании и поддержании здоровья человека, так и в патогенезе широкого спектра заболеваний. Имеются данные о взаимосвязи кишечной микробиоты и иммунной системы, риска развития ряда злокачественных и аутоиммунных заболеваний. В статье рассмотрены функции кишечной микробиоты, факторы, определяющие ее состав. Исследования показали наличие связи между кишечной микробиотой и щитовидной железой, что легло в основу формирования теории оси «кишечник – щитовидная железа». Показано, что кишечная микробиота принимает участие в метаболизме тиреоидных гормонов и обеспечивает их энтерогепатическую циркуляцию. Предполагается, что одним из связующих звеньев между щитовидной железой и микроорганизмами желудочно-кишечного тракта является иммунная система. Представлены результаты исследований, посвященных изучению таксономического состава кишечной микробиоты у пациентов с аутоиммунным тиреоидитом и болезнью Грейвса. Предполагается, что состав кишечной микробиоты может влиять на потребность в левотироксине натрия, особенно у пациентов с субклиническим гипотиреозом. При этом прием левотироксина при гипотиреозе и в меньшей степени непосредственно манифестный гипотиреоз в исходе аутоиммунного тиреоидита ассоциированы с синдромом избыточного бактериального роста, несмотря на достижение эутиреоза, и могут оказывать влияние на состав микробиоты. Несмотря на то что аутоиммунные заболевания щитовидной железы довольно распространены в общей популяции, работ, посвященной данной проблематике, проведено немного. Необходимы более надежные фундаментальные и клинические исследования для выявления конкретных взаимосвязей и механизмов развития патологии щитовидной железы в зависимости от изменения состава кишечной микробиоты, а также оценки потенциальной возможности ее использования с терапевтической целью.

Об авторах

А. А. Тульский
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Россия

Тульский Андрей Алексеевич, аспирант кафедры эндокринологии

119991, Москва, ул. Трубецкая, д. 8, стр. 2



О. А. Мыринова
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Россия

Мыринова Ольга Александровна, аспирант кафедры эндокринологии

119991, Москва, ул. Трубецкая, д. 8, стр. 2



А. О. Щетинина
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Россия

Щетинина Анна Олеговна, к.м.н., ассистент кафедры эндокринологии

119991, Москва, ул. Трубецкая, д. 8, стр. 2



Н. С. Мартиросян
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Россия

Мартиросян Нарине Степановна, к.м.н., доцент кафедры эндокринологии

119991, Москва, ул. Трубецкая, д. 8, стр. 2



Е. В. Гончарова
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Россия

Гончарова Екатерина Валерьевна, к.м.н., доцент кафедры эндокринологии

119991, Москва, ул. Трубецкая, д. 8, стр. 2



И. А. Кузина
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Россия

Кузина Ирина Александровна, ассистент кафедры эндокринологии

119991, Москва, ул. Трубецкая, д. 8, стр. 2



М. Э. Тельнова
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Россия

Тельнова Милена Эдуардовна, к.м.н., доцент кафедры эндокринологии

119991, Москва, ул. Трубецкая, д. 8, стр. 2



Ф. В. Валеева
Казанский государственный медицинский университет
Россия

Валеева Фарида Вадутовна, д.м.н., профессор, заведующая кафедрой эндокринологии

420012, Казань, ул. Бутлерова, д. 49

 



Н. А. Петунина
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Россия

Петунина Нина Александровна, чл.- корр. РАН, д.м.н., профессор, заведующая кафедрой эндокринологии

119991, Москва, ул. Трубецкая, д. 8, стр. 2



Список литературы

1. Liu X, Cheng Y, Zang D, Zhang M, Li X, Liu D et al. The Role of Gut Microbiota in Lung Cancer: From Carcinogenesis to Immunotherapy. Front Oncol. 2021;11:720842. https://doi.org/10.3389/fonc.2021.720842.

2. Rebersek M. Gut microbiome and its role in colorectal cancer. BMC Cancer. 2021;21(1):1325. https://doi.org/10.1186/s12885-021-09054-2.

3. Ruo SW, Alkayyali T, Win M, Tara A, Joseph C, Kannan A et al. Role of Gut Microbiota Dysbiosis in Breast Cancer and Novel Approaches in Prevention, Diagnosis, and Treatment. Cureus. 2021;13(8):e17472. https://doi.org/10.7759/cureus.17472.

4. Fujita K, Matsushita M, Banno E, De Velasco MA, Hatano K, Nonomura N, Uemura H. Gut microbiome and prostate cancer. Int J Urol. 2022;29(8):793–798. https://doi.org/10.1111/iju.14894.

5. Han M, Wang N, Han W, Ban M, Sun T, Xu J. Gut Microbes in Gynecologic Cancers: Causes or Biomarkers and Therapeutic Potential. Front Oncol. 2022;12:902695. https://doi.org/10.3389/fonc.2022.902695.

6. Chen Y, Ma J, Dong Y, Yang Z, Zhao N, Liu Q et al. Characteristics of Gut Microbiota in Patients With Clear Cell Renal Cell Carcinoma. Front Microbiol. 2022;13:913718. https://doi.org/10.3389/fmicb.2022.913718.

7. Yang J, Zhou X, Liu X, Ling Z, Ji F. Role of the Gastric Microbiome in Gastric Cancer: From Carcinogenesis to Treatment. Front Microbiol. 2021;12:641322. https://doi.org/10.3389/fmicb.2021.641322.

8. Kang Y, Cai Y, Yang Y. The Gut Microbiome and Hepatocellular Carcinoma: Implications for Early Diagnostic Biomarkers and Novel Therapies. Liver Cancer. 2021;11(2):113–125. https://doi.org/10.1159/000521358.

9. Rahman MM, Islam F, Harun-Or-Rashid M, Mamun AA, Rahaman MS, Islam MM et al. The Gut Microbiota (Microbiome) in Cardiovascular Disease and Its Therapeutic Regulation. Front Cell Infect Microbiol. 2022;12:903570. https://doi.org/10.3389/fcimb.2022.903570.

10. Zhu M, Liu X, Ye Y, Yan X, Cheng Y, Zhao L et al. Gut Microbiota: A Novel Therapeutic Target for Parkinson’s Disease. Front Immunol. 2022;13:937555. https://doi.org/10.3389/fimmu.2022.937555.

11. Jiang C, Li G, Huang P, Liu Z, Zhao B. The Gut Microbiota and Alzheimer’s Disease. J Alzheimers Dis. 2017;58(1):1–15. https://doi.org/10.3233/JAD-161141.

12. Taniya MA, Chung HJ, Al Mamun A, Alam S, Aziz MA, Emon NU et al. Role of Gut Microbiome in Autism Spectrum Disorder and Its Therapeutic Regulation. Front Cell Infect Microbiol. 2022;12:915701. https://doi.org/10.3389/fcimb.2022.915701.

13. Zhao T, Wei Y, Zhu Y, Xie Z, Hai Q, Li Z, Qin D. Gut microbiota and rheumatoid arthritis: From pathogenesis to novel therapeutic opportunities. Front Immunol. 2022;13:1007165. https://doi.org/10.3389/fimmu.2022.1007165.

14. Zhang L, Qing P, Yang H, Wu Y, Liu Y, Luo Y. Gut Microbiome and Metabolites in Systemic Lupus Erythematosus: Link, Mechanisms and Intervention. Front Immunol. 2021;12:686501. https://doi.org/10.3389/fimmu.2021.686501.

15. Xu X, Ying J. Gut Microbiota and Immunotherapy. Front Microbiol. 2022;13:945887. https://doi.org/10.3389/fmicb.2022.945887.

16. Altieri C, Speranza B, Corbo MR, Sinigaglia M, Bevilacqua A. Gut-Microbiota, and Multiple Sclerosis: Background, Evidence, and Perspectives. Nutrients. 2023;15(4):942. https://doi.org/10.3390/nu15040942.

17. Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C et al. Microbiota in health and diseases. Signal Transduct Target Ther. 2022;7(1):135. https://doi.org/10.1038/s41392-022-00974-4.

18. Berg G, Rybakova D, Fischer D, Cernava T, Vergès MC, Charles T et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome. 2020;8(1):103. https://doi.org/10.1186/s40168-020-00875-0.

19. Reynoso-García J, Miranda-Santiago AE, Meléndez-Vázquez NM, Acosta-Pagán K, Sánchez-Rosado M, Díaz-Rivera J et al. A complete guide to human microbiomes: Body niches, transmission, development, dysbiosis, and restoration. Front Syst Biol. 2022;2:951403. https://doi.org/10.3389/fsysb.2022.951403.

20. Martínez JE, Vargas A, Pérez-Sánchez T, Encío IJ, Cabello-Olmo M, Barajas M. Human Microbiota Network: Unveiling Potential Crosstalk between the Different Microbiota Ecosystems and Their Role in Health and Disease. Nutrients. 2021;13(9):2905. https://doi.org/10.3390/nu13092905.

21. Kastl AJ Jr, Terry NA, Wu GD, Albenberg LG. The Structure and Function of the Human Small Intestinal Microbiota: Current Understanding and Future Directions. Cell Mol Gastroenterol Hepatol. 2020;9(1):33–45. https://doi.org/10.1016/j.jcmgh.2019.07.006.

22. Bull MJ, Plummer NT. Part 1: The Human Gut Microbiome in Health and Disease. Integr Med (Encinitas). 2014;13(6):17–22. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566439/.

23. Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016;14(8):e1002533. https://doi.org/10.1371/journal.pbio.1002533.

24. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823–1836. https://doi.org/10.1042/BCJ20160510.

25. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–1023. https://doi.org/10.1038/4441022a.

26. Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, Mele MC. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms. 2019;7(1):14. https://doi.org/10.3390/microorganisms7010014.

27. Zhang YJ, Li S, Gan RY, Zhou T, Xu DP, Li HB. Impacts of gut bacteria on human health and diseases. Int J Mol Sci. 2015;16(4):7493–7519. https://doi.org/10.3390/ijms16047493.

28. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–180. https://doi.org/10.1038/nature09944.

29. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. https://doi.org/10.1038/nature08821.

30. Bourdeau-Julien I, Castonguay-Paradis S, Rochefort G, Perron J, Lamarche B, Flamand N et al. The diet rapidly and differentially affects the gut microbiota and host lipid mediators in a healthy population. Microbiome. 2023;11(1):26. https://doi.org/10.1186/s40168-023-01469-2.

31. Mansour SR, Moustafa MAA, Saad BM, Hamed R, Moustafa AA. Impact of diet on human gut microbiome and disease risk. New Microbes New Infect. 2021;41:100845. https://doi.org/10.1016/j.nmni.2021.100845.

32. Su Q, Liu Q. Factors Affecting Gut Microbiome in Daily Diet. Front Nutr. 2021;8:644138. https://doi.org/10.3389/fnut.2021.644138.

33. Makki K, Deehan EC, Walter J, Bäckhed F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe. 2018;23(6):705–715. https://doi.org/10.1016/j.chom.2018.05.012.

34. Fu J, Zheng Y, Gao Y, Xu W. Dietary Fiber Intake and Gut Microbiota in Human Health. Microorganisms. 2022;10(12):2507. https://doi.org/10.3390/microorganisms10122507.

35. Koliada A, Moseiko V, Romanenko M, Piven L, Lushchak O, Kryzhanovska N et al. Seasonal variation in gut microbiota composition: cross-sectional evidence from Ukrainian population. BMC Microbiol. 2020;20(1):100. https://doi.org/10.1186/s12866-020-01786-8.

36. Baniel A, Amato KR, Beehner JC, Bergman TJ, Mercer A, Perlman RF et al. Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas. Microbiome. 2021;9(1):26. https://doi.org/10.1186/s40168-020-00977-9.

37. Song F, Xu Y, Peng P, Li H, Zheng R, Zhang H et al. Seasonal Changes in the Structure and Function of Gut Microbiota in the Muskrat (Ondatra zibethicus). Metabolites. 2023;13(2):248. https://doi.org/10.3390/metabo13020248.

38. Matsumoto S, Ren L, Iigo M, Murai A, Yoshimura T. Mimicking seasonal changes in light-dark cycle and ambient temperature modulates gut microbiome in mice under the same dietary regimen. PLoS ONE. 2023;18(2):e0278013. https://doi.org/10.1371/journal.pone.0278013.

39. Arreaza-Gil V, Escobar-Martínez I, Suárez M, Bravo FI, Muguerza B, Arola-Arnal A, Torres-Fuentes C. Gut Seasons: Photoperiod Effects on Fecal Microbiota in Healthy and Cafeteria-Induced Obese Fisher 344 Rats. Nutrients. 2022;14(3):722. https://doi.org/10.3390/nu14030722.

40. Hasan N, Yang H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ. 2019;7:e7502. https://doi.org/10.7717/peerj.7502.

41. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787–8803. https://doi.org/10.3748/wjg.v21.i29.8787.

42. Gaulke CA, Sharpton TJ. The influence of ethnicity and geography on human gut microbiome composition. Nat Med. 2018;24(10):1495–1496. https://doi.org/10.1038/s41591-018-0210-8.

43. Syromyatnikov M, Nesterova E, Gladkikh M, Smirnova Y, Gryaznova M, Popov V. Characteristics of the Gut Bacterial Composition in People of Different Nationalities and Religions. Microorganisms. 2022;10(9):1866. https://doi.org/10.3390/microorganisms10091866.

44. Ho HE, Bunyavanich S. Role of the Microbiome in Food Allergy. Curr Allergy Asthma Rep. 2018;18(4):27. https://doi.org/10.1007/s11882-018-0780-z.

45. Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30(6):492–506. https://doi.org/10.1038/s41422-020-0332-7.

46. Guo Y, Chen X, Gong P, Li G, Yao W, Yang W. The Gut-Organ-Axis Concept: Advances the Application of Gut-on-Chip Technology. Int J Mol Sci. 2023;24(4):4089. https://doi.org/10.3390/ijms24044089.

47. Liu L, Huh JR, Shah K. Microbiota and the gut-brain-axis: Implications for new therapeutic design in the CNS. EBioMedicine. 2022;77:103908. https://doi.org/10.1016/j.ebiom.2022.103908.

48. Fenneman AC, Bruinstroop E, Nieuwdorp M, van der Spek AH, Boelen A. A Comprehensive Review of Thyroid Hormone Metabolism in the Gut and Its Clinical Implications. Thyroid. 2023;33(1):32–44. https://doi.org/10.1089/thy.2022.0491.

49. Peeters RP, Visser TJ. Metabolism of Thyroid Hormone. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E et al. (eds.). Endotext. South Dartmouth (MA): MDText.com, Inc.; 2000. Available at: https://www.ncbi.nlm.nih.gov/books/NBK285545/.

50. Salvatore G, Covelli I, Roche J. La fixation des hormones thyroidiennes par Escherichia coli et son mécanisme. Gen Comp Endocrinol. 1963;3(1):15–25. https://doi.org/10.1016/0016-6480(63)90042-x.

51. Asarat M, Apostolopoulos V, Vasiljevic T, Donkor O. Short-Chain Fatty Acids Regulate Cytokines and Th17/Treg Cells in Human Peripheral Blood Mononuclear Cells in vitro. Immunol Invest. 2016;45(3):205–222. https://doi.org/10.3109/08820139.2015.1122613.

52. Knezevic J, Starchl C, Tmava Berisha A, Amrein K. Thyroid-Gut-Axis: How Does the Microbiota Influence Thyroid Function? Nutrients. 2020;12(6):1769. https://doi.org/10.3390/nu12061769.

53. Segain JP, Raingeard de la Blétière D, Bourreille A, Leray V, Gervois N, Rosales C et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease. Gut. 2000;47(3):397–403. https://doi.org/10.1136/gut.47.3.397.

54. Meng F, Lowell CA. Lipopolysaccharide (LPS)-induced macrophage activation and signal transduction in the absence of Src-family kinases Hck, Fgr, and Lyn. J Exp Med. 1997;185(9):1661–1670. https://doi.org/10.1084/jem.185.9.1661.

55. Chaiwut R, Kasinrerk W. Very low concentration of lipopolysaccharide can induce the production of various cytokines and chemokines in human primary monocytes. BMC Res Notes. 2022;15(1):42. https://doi.org/10.1186/s13104-022-05941-4.

56. Mazzieri A, Montanucci P, Basta G, Calafiore R. The role behind the scenes of Tregs and Th17s in Hashimoto’s thyroiditis: Toward a pivotal role of FOXP3 and BACH2. Front Immunol. 2022;13:1098243. https://doi.org/10.3389/fimmu.2022.1098243.

57. Li C, Yuan J, Zhu YF, Yang XJ, Wang Q, Xu J et al. Imbalance of Th17/Treg in Different Subtypes of Autoimmune Thyroid Diseases. Cell Physiol Biochem. 2016;40(1-2):245–252. https://doi.org/10.1159/000452541.

58. Kustrimovic N, Gallo D, Piantanida E, Bartalena L, Lai A, Zerbinati N et al. Regulatory T Cells in the Pathogenesis of Graves’ Disease. Int J Mol Sci. 2023;24(22):16432. https://doi.org/10.3390/ijms242216432.

59. Park JH, Jeong SY, Choi AJ, Kim SJ. Lipopolysaccharide directly stimulates Th17 differentiation in vitro modulating phosphorylation of RelB and NF-κB1. Immunol Lett. 2015;165(1):10–19. https://doi.org/10.1016/j.imlet.2015.03.003.

60. Pedro AB, Romaldini JH, Takei K. Changes of serum cytokines in hyperthyroid Graves’ disease patients at diagnosis and during methimazole treatment. Neuroimmunomodulation. 2011;18(1):45–51. https://doi.org/10.1159/000311519.

61. Siddiq A, Naveed AK, Ghaffar N, Aamir M, Ahmed N. Association of ProInflammatory Cytokines with Vitamin D in Hashimoto’s Thyroid Autoimmune Disease. Medicina (Kaunas). 2023;59(5):853. https://doi.org/10.3390/medicina59050853.

62. Kondo K, Harbuz MS, Levy A, Lightman SL. Inhibition of the hypothalamicpituitary-thyroid axis in response to lipopolysaccharide is independent of changes in circulating corticosteroids. Neuroimmunomodulation. 1997;4(4):188–194. https://doi.org/10.1159/000097337.

63. Yang N, Zhang DL, Hao JY, Wang G. Serum levels of thyroid hormones and thyroid stimulating hormone in patients with biliogenic and hyperlipidaemic acute pancreatitis: Difference and value in predicting disease severity. J Int Med Res. 2016;44(2):267–277. https://doi.org/10.1177/0300060515618052.

64. Sánchez E, Singru PS, Fekete C, Lechan RM. Induction of type 2 iodothyronine deiodinase in the mediobasal hypothalamus by bacterial lipopolysaccharide: role of corticosterone. Endocrinology. 2008;149(5):2484–2493. https://doi.org/10.1210/en.2007-1697.

65. De Vries EM, Surovtseva O, Vos WG, Kunst RF, van Beeren M, Kwakkel J et al. Downregulation of Type 3 Deiodinase in the Hypothalamus During Inflammation. Thyroid. 2019;29(9):1336–1343. https://doi.org/10.1089/thy.2019.0201.

66. Kahl S, Elsasser TH, Blum JW. Effect of endotoxin challenge on hepatic 5’-deiodinase activity in cattle. Domest Anim Endocrinol. 2000;18(1):133–143. https://doi.org/10.1016/s0739-7240(99)00069-7.

67. Nicola JP, Vélez ML, Lucero AM, Fozzatti L, Pellizas CG, Masini-Repiso AM. Functional toll-like receptor 4 conferring lipopolysaccharide responsiveness is expressed in thyroid cells. Endocrinology. 2009;150(1):500–508. https://doi.org/10.1210/en.2008-0345.

68. Nicola JP, Nazar M, Mascanfroni ID, Pellizas CG, Masini-Repiso AM. NF-kappaB p65 subunit mediates lipopolysaccharide-induced Na(+)/I(–) symporter gene expression by involving functional interaction with the paired domain transcription factor Pax8. Mol Endocrinol. 2010;24(9):1846–1862. https://doi.org/10.1210/me.2010-0102.

69. Vélez ML, Costamagna E, Kimura ET, Fozzatti L, Pellizas CG, Montesinos MM et al. Bacterial lipopolysaccharide stimulates the thyrotropin-dependent thyroglobulin gene expression at the transcriptional level by involving the transcription factors thyroid transcription factor-1 and paired box domain transcription factor 8. Endocrinology. 2006;147(7):3260–3275. https://doi.org/10.1210/en.2005-0789.

70. Pérez-Reytor D, Puebla C, Karahanian E, García K. Use of Short-Chain Fatty Acids for the Recovery of the Intestinal Epithelial Barrier Affected by Bacterial Toxins. Front Physiol. 2021;12:650313. https://doi.org/10.3389/fphys.2021.650313.

71. Mendoza-León MJ, Mangalam AK, Regaldiz A, González-Madrid E, Rangel-Ramírez MA, Álvarez-Mardonez O et al. Gut microbiota shortchain fatty acids and their impact on the host thyroid function and diseases. Front Endocrinol (Lausanne). 2023;14:1192216. https://doi.org/10.3389/fendo.2023.1192216.

72. Virili C, Antonelli A, Santaguida MG, Benvenga S, Centanni M. Gastrointestinal Malabsorption of Thyroxine. Endocr Rev. 2019;40(1):118–136. https://doi.org/10.1210/er.2018-00168.

73. Sun J, Zhao F, Lin B, Feng J, Wu X, Liu Y et al. Gut Microbiota Participates in Antithyroid Drug Induced Liver Injury Through the Lipopolysaccharide Related Signaling Pathway. Front Pharmacol. 2020;11:598170. https://doi.org/10.3389/fphar.2020.598170.

74. Yao Z, Zhao M, Gong Y, Chen W, Wang Q, Fu Y et al. Relation of Gut Microbes and L-Thyroxine Through Altered Thyroxine Metabolism in Subclinical Hypothyroidism Subjects. Front Cell Infect Microbiol. 2020;10:495. https://doi.org/10.3389/fcimb.2020.00495.

75. Brechmann T, Sperlbaum A, Schmiegel W. Levothyroxine therapy and impaired clearance are the strongest contributors to small intestinal bacterial overgrowth: Results of a retrospective cohort study. World J Gastroenterol. 2017;23(5):842–852. https://doi.org/10.3748/wjg.v23.i5.842.

76. Lauritano EC, Bilotta AL, Gabrielli M, Scarpellini E, Lupascu A, Laginestra A et al. Association between hypothyroidism and small intestinal bacterial overgrowth. J Clin Endocrinol Metab. 2007;92(11):4180–4184. https://doi.org/10.1210/jc.2007-0606.

77. Yang M, Zheng X, Wu Y, Zhang R, Yang Q, Yu Z et al. Preliminary Observation of the Changes in the Intestinal Flora of Patients With Graves’ Disease Before and After Methimazole Treatment. Front Cell Infect Microbiol. 2022;12:794711. https://doi.org/10.3389/fcimb.2022.794711.

78. Li X, Hong J, Wang Y, Pei M, Wang L, Gong Z. Trimethylamine-N-Oxide Pathway: A Potential Target for the Treatment of MAFLD. Front Mol Biosci. 2021;8:733507. https://doi.org/10.3389/fmolb.2021.733507.

79. Janeiro MH, Ramírez MJ, Milagro FI, Martínez JA, Solas M. Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients. 2018;10(10):1398. https://doi.org/10.3390/nu10101398.

80. Gawałko M, Agbaedeng TA, Saljic A, Müller DN, Wilck N, Schnabel R et al. Gut microbiota, dysbiosis and atrial fibrillation. Arrhythmogenic mechanisms and potential clinical implications. Cardiovasc Res. 2022;118(11):2415–2427. https://doi.org/10.1093/cvr/cvab292.

81. Meng G, Zhou X, Wang M, Zhou L, Wang Z, Wang M et al. Gut microbederived metabolite trimethylamine N-oxide activates the cardiac autonomic nervous system and facilitates ischemia-induced ventricular arrhythmia via two different pathways. EBioMedicine. 2019;44:656–664. https://doi.org/10.1016/j.ebiom.2019.03.066.

82. Warrier M, Shih DM, Burrows AC, Ferguson D, Gromovsky AD, Brown AL et al. The TMAO-Generating Enzyme Flavin Monooxygenase 3 Is a Central Regulator of Cholesterol Balance. Cell Rep. 2015;10(3):326–338. https://doi.org/10.1016/j.celrep.2014.12.036.

83. Shih DM, Wang Z, Lee R, Meng Y, Che N, Charugundla S et al. Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. J Lipid Res. 2015;56(1):22–37. https://doi.org/10.1194/jlr.M051680.

84. Krueger SK, Williams DE. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol Ther. 2005;106(3):357–387. https://doi.org/10.1016/j.pharmthera.2005.01.001.

85. Fennema D, Phillips IR, Shephard EA. Trimethylamine and Trimethylamine N-Oxide, a Flavin-Containing Monooxygenase 3 (FMO3)-Mediated HostMicrobiome Metabolic Axis Implicated in Health and Disease. Drug Metab Dispos. 2016;44(11):1839–1850. https://doi.org/10.1124/dmd.116.070615.

86. Andermann T, Antonelli A, Barrett RL, Silvestro D. Estimating Alpha, Beta, and Gamma Diversity Through Deep Learning. Front Plant Sci. 2022;13:839407. https://doi.org/10.3389/fpls.2022.839407.

87. Zhao F, Feng J, Li J, Zhao L, Liu Y, Chen H et al. Alterations of the Gut Microbiota in Hashimoto’s Thyroiditis Patients. Thyroid. 2018;28(2):175–186. https://doi.org/10.1089/thy.2017.0395.

88. Zhao H, Yuan L, Zhu D, Sun B, Du J, Wang J. Alterations and Mechanism of Gut Microbiota in Graves’ Disease and Hashimoto’s Thyroiditis. Pol J Microbiol. 2022;71(2):173–189. https://doi.org/10.33073/pjm-2022-016.

89. El-Zawawy HT, Ahmed SM, El-Attar EA, Ahmed AA, Roshdy YS, Header DA. Study of gut microbiome in Egyptian patients with autoimmune thyroid diseases. Int J Clin Pract. 2021;75(5):e14038. https://doi.org/10.1111/ijcp.14038.

90. Liu S, An Y, Cao B, Sun R, Ke J, Zhao D. The Composition of Gut Microbiota in Patients Bearing Hashimoto’s Thyroiditis with Euthyroidism and Hypothyroidism. Int J Endocrinol. 2020:5036959. https://doi.org/10.1155/2020/5036959.

91. Liu J, Qin X, Lin B, Cui J, Liao J, Zhang F, Lin Q. Analysis of gut microbiota diversity in Hashimoto’s thyroiditis patients. BMC Microbiol. 2022;22(1):318. https://doi.org/10.1186/s12866-022-02739-z.

92. Cornejo-Pareja I, Ruiz-Limón P, Gómez-Pérez AM, Molina-Vega M, Moreno-Indias I, Tinahones FJ. Differential Microbial Pattern Description in Subjects with Autoimmune-Based Thyroid Diseases: A Pilot Study. J Pers Med. 2020;10(4):192. https://doi.org/10.3390/jpm10040192.

93. Ishaq HM, Mohammad IS, Guo H, Shahzad M, Hou YJ, Ma C et al. Molecular estimation of alteration in intestinal microbial composition in Hashimoto’s thyroiditis patients. Biomed Pharmacother. 2017;95:865–874. https://doi.org/10.1016/j.biopha.2017.08.101.

94. Cayres LCF, de Salis LVV, Rodrigues GSP, Lengert AVH, Biondi APC, Sargentini LDB et al. Detection of Alterations in the Gut Microbiota and Intestinal Permeability in Patients With Hashimoto Thyroiditis. Front Immunol. 2021;12:579140. https://doi.org/10.3389/fimmu.2021.579140.

95. Wu M, Yang Y, Fan Y, Guo S, Li T, Gu M et al. Characteristics of the Intestinal Flora of TPOAb-Positive Women With Subclinical Hypothyroidism in the Second Trimester of Pregnancy: A Single-Center Prospective Cohort Study. Front Cell Infect Microbiol. 2022;12:794170. https://doi.org/10.3389/fcimb.2022.794170.

96. Fenneman AC, Rampanelli E, van der Spek AH, Fliers E, Nieuwdorp M. Protocol for a double-blinded randomised controlled trial to assess the effect of faecal microbiota transplantations on thyroid reserve in patients with subclinical autoimmune hypothyroidism in the Netherlands: the IMITHOT trial. BMJ Open. 2023;13(9):e073971. https://doi.org/10.1136/bmjopen2023-073971.

97. Chang SC, Lin SF, Chen ST, Chang PY, Yeh YM, Lo FS, Lu JJ. Alterations of Gut Microbiota in Patients With Graves’ Disease. Front Cell Infect Microbiol. 2021;11:663131. https://doi.org/10.3389/fcimb.2021.663131.

98. Chen J, Wang W, Guo Z, Huang S, Lei H, Zang P et al. Associations between gut microbiota and thyroidal function status in Chinese patients with Graves’ disease. J Endocrinol Invest. 2021;44(9):1913–1926. https://doi.org/10.1007/s40618-021-01507-6.

99. Yan HX, An WC, Chen F, An B, Pan Y, Jin J et al. Intestinal microbiota changes in Graves’ disease: a prospective clinical study. Biosci Rep. 2020;40(9):BSR20191242. https://doi.org/10.1042/BSR20191242.

100. Ishaq HM, Mohammad IS, Shahzad M, Ma C, Raza MA, Wu X et al. Molecular Alteration Analysis of Human Gut Microbial Composition in Graves’ disease Patients. Int J Biol Sci. 2018;14(11):1558–1570. https://doi.org/10.7150/ijbs.24151.

101. Jiang W, Yu X, Kosik RO, Song Y, Qiao T, Tong J et al. Gut Microbiota May Play a Significant Role in the Pathogenesis of Graves’ Disease. Thyroid. 2021;31(5):810–820. https://doi.org/10.1089/thy.2020.0193.

102. Jiang W, Lu G, Qiao T, Yu X, Luo Q, Tong J et al. Integrated microbiome and metabolome analysis reveals a distinct microbial and metabolic signature in Graves’ disease and hypothyroidism. Heliyon. 2023;9(11):e21463. https://doi.org/10.1016/j.heliyon.2023.e21463.

103. Yang M, Li F, Zhang R, Wu Y, Yang Q, Wang F et al. Alteration of the Intestinal Microbial Flora and the Serum IL-17 Level in Patients with Graves’ Disease Complicated with Vitamin D Deficiency. Int Arch Allergy Immunol. 2022;183(2):225–234. https://doi.org/10.1159/000518949.

104. Biscarini F, Masetti G, Muller I, Verhasselt HL, Covelli D, Colucci G et al. Gut Microbiome Associated With Graves Disease and Graves Orbitopathy: The INDIGO Multicenter European Study. J Clin Endocrinol Metab. 2023;108(8):2065–2077. https://doi.org/10.1210/clinem/dgad030.

105. Shi TT, Hua L, Wang H, Xin Z. The Potential Link between Gut Microbiota and Serum TRAb in Chinese Patients with Severe and Active Graves’ Orbitopathy. Int J Endocrinol. 2019:9736968. https://doi.org/10.1155/2019/9736968.

106. Shi TT, Xin Z, Hua L, Wang H, Zhao RX, Yang YL et al. Comparative assessment of gut microbial composition and function in patients with Graves’ disease and Graves’ orbitopathy. J Endocrinol Invest. 2021;44(2):297–310. https://doi.org/10.1007/s40618-020-01298-2.

107. Shi TT, Xin Z, Hua L, Zhao RX, Yang YL, Wang H et al. Alterations in the intestinal microbiota of patients with severe and active Graves’ orbitopathy: a cross-sectional study. J Endocrinol Invest. 2019;42(8):967–978. https://doi.org/10.1007/s40618-019-1010-9.


Рецензия

Для цитирования:


Тульский АА, Мыринова ОА, Щетинина АО, Мартиросян НС, Гончарова ЕВ, Кузина ИА, Тельнова МЭ, Валеева ФВ, Петунина НА. Ассоциация между кишечной микробиотой и дисфункцией щитовидной железы. Медицинский Совет. 2024;(6):240-249. https://doi.org/10.21518/ms2024-073.

For citation:


Tulsky AA, Myrinova OA, Shchetinina AO, Martirosian NS, Goncharova EV, Kuzina IA, Telnova ME, Valeeva FV, Petunina NA. Association between gut microbiota and thyroid dysfunction. Meditsinskiy sovet = Medical Council. 2024;(6):240-249. (In Russ.) https://doi.org/10.21518/ms2024-073.

Просмотров: 215


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)