Preview

Медицинский Совет

Расширенный поиск

Вектор гликированного гемоглобина в формировании дисгликемии в постменопаузе: акценты ранней диагностики и терапии

https://doi.org/10.21518/ms2024-394

Аннотация

Введение. Тесная связь постменопаузы с инсулинорезистентностью (ИР) и метаболическим синдромом (МетС) маркирует высокий кардиометаболический риск дисгликемии, определяя необходимость ее ранней диагностики и терапии. Патогенетически обоснованные критерии диагностики предиабета и характер ранней медикаментозной терапии сахарного диабета 2-го типа (СД2) дискутируются. Сведения о взаимосвязях параметров глюкозного гомеостаза и менопаузального МетС фрагментарны.

Цель. Оценить ассоциации гликированного гемоглобина (HbA1c) с индексами ИР, функцией β-клеток и характеристиками МетС в когорте постменопаузальных женщин с различным состоянием углеводного обмена.

Материалы и методы. У 94 европеоидных женщин в постменопаузе 58,0 (53,0; 63,0) лет определены: HbA1c, гликемия натощак (ГН), индексы TyG и линейки HOMA2, С-пептид, ИМТ, окружность талии (ОТ), уровни артериального давления (АД), триглицеридов (ТГ), ХС-ЛПВП. При классификации женщин по HbA1c (критерии ADA) 15 имели нормогликемию, 24 – предиабет, 55 – СД2. С помощью SPSS (версия 17) оценивали ME (25–75%); межгрупповые различия по критерию Mанна – Уитни; проводили корреляционный анализ по Спирмену и partial correlation.

Результаты. HbA1c-возраст независимо коррелировал с параметрами ИР: TyG (R = 0,590; p < 0,001), HOMA2-IR (R = 0,318; p < 0,05) и функцией ꞵ-клеток: HOMA2-B (R = -0,355; p < 0,001); с липидными маркерами МетС (ТГ, ХС-ЛПВП, R = 0,382;

-0,448; p < 0,001 соответственно), антропометрическими и уровнями АД.

Выводы. Ассоциация HbA1c у постменопаузальных женщин со спектром параметров глюкозного гомеостаза и МетС маркируют его как вектор формирования и прогрессирования дисгликемии вследствие тесной связи с функциональным состоянием β-клеток и значением липоглюкотоксичности в динамике постменопаузальной ИР. Полученные данные патогенетически определяют использование HbA1c в верификации дисгликемии и раннее назначение комбинированной антигипергликемической терапии, направленной на сохранение функции β-клетки. Рассматривается потенциал ингибиторов дипептидилпептидазы-4 в замедлении прогрессирования сахарного диабета 2-го типа.

Об авторах

Л. А. Руяткина
Новосибирский государственный медицинский университет
Россия

Руяткина Людмила Александровна, д.м.н., профессор

630091, Новосибирск, Красный проспект, д. 52



Д. С. Руяткин
Новосибирский государственный медицинский университет
Россия

Руяткин Дмитрий Сергеевич, к.м.н., доцент

630091, Новосибирск, Красный проспект, д. 52



Л. В. Щербакова
Научно-исследовательский институт терапии и профилактической медицины
Россия

Щербакова Лилия Валерьевна, cтарший научный сотрудник

630089, Новосибирск, ул. Б. Богаткова, д. 175/1



И. С. Исхакова
ООО «Андромед-Клиника»
Россия

Исхакова Ирина Сергеевна, к.м.н., врач-эндокринолог

630005, Новосибирск, ул. Гоголя, д. 42



Список литературы

1. Ou YJ, Lee JI, Huang SP, Chen SC, Geng JH, Su CH. Association between Menopause, Postmenopausal Hormone Therapy and Metabolic Syndrome. J Clin Med. 2023;12(13):4435. https://doi.org/10.3390/jcm12134435

2. Hong E, Kang Y. Lifestyle Factors Influencing Metabolic Syndrome after Adjusting for Socioeconomic Status and Female Reproductive Health Indicators: A National Representative Survey in Korean Pre- and Postmenopausal Women. Healthcare. 2024;12(8):821. https://doi.org/10.3390/healthcare12080821.

3. Jeong HG, Park H. Metabolic Disorders in Menopause. Metabolites. 2022;12(10):954. https://doi.org/10.3390/metabo12100954.

4. Lonardo A. The heterogeneity of metabolic syndrome presentation and challenges this causes in its pharmacological management: a narrative review focusing on principal risk modifiers. Expert Rev Clin Pharmacol. 2023;16(10):891–911. https://doi.org/10.1080/17512433.2023.2259306.

5. Rattanatham R, Tangpong J, Chatatikun M, Sun D, Kawakami F, Imai M, Klangbud WK. Assessment of eight insulin resistance surrogate indexes for predicting metabolic syndrome and hypertension in Thai law enforcement officers. PeerJ. 2023;11:e15463. https://doi.org/10.7717/peerj.15463.

6. Hewage N, Wijesekara U, Perera R. Insulin Resistance-Related Cardiometabolic Risk Among Nondiabetic Childbearing Age Females. Metab Syndr Relat Disord. 2024;22(6):447–453. https://doi.org/10.1089/met.2024.0009.

7. Song J, Li Y, Zhu J, Liang J, Xue S, Zhu Z. Non-linear associations of cardiometabolic index with insulin resistance, impaired fasting glucose, and type 2 diabetes among US adults: a cross-sectional study. Front Endocrinol (Lausanne). 2024;15:1341828. https://doi.org/10.3389/fendo.2024.1341828.

8. Lopez-Jaramillo P, Gomez-Arbelaez D, Martinez-Bello D, Abat MEM, Alhabib KF, Avezum Á et al. Association of the triglyceride glucose index as a measure of insulin resistance with mortality and cardiovascular disease in populations from five continents (PURE study): a prospective cohort study. Lancet Healthy Longev. 2023;4(1):e23–e33. https://doi.org/10.1016/S2666-7568(22)00247-1.

9. Ruyatkina LA, Ruyatkin DS, Shcherbakova LV. Hormonal-metabolic trajectory of menopausal transition in a normoglycemic cohort of women with different blood pressure levels. Med Res Arch. 2024;12(1). https://doi.org/10.18103/mra.v12i1.4972.

10. Ciarambino T, Crispino P, Guarisco G, Giordano M. Gender Differences in Insulin Resistance: New Knowledge and Perspectives. Curr Issues Mol Biol. 2023;45(10):7845–7861. https://doi.org/10.3390/cimb45100496.

11. Rentsch CT, Garfield V, Mathur R, Eastwood SV, Smeeth L, Chaturvedi N, Bhaskaran K. Sex-specific risks for cardiovascular disease across the glycaemic spectrum: a population-based cohort study using the UK Biobank. Lancet Reg Health Eur. 2023;32:100693. https://doi.org/10.1016/j.lanepe.2023.100693.

12. Ao L, Willems van Dijk K, van Heemst D, Noordam R. Differential and sexand age-specific risks of cardiometabolic diseases with unrelated metabolic syndrome dimensions. Obesity. 2023;31(7):1933–1941. https://doi.org//10.1002/oby.23778.

13. de Ritter R, de Jong M, Vos RC, van der Kallen CJH, Sep SJS, Woodward M et al. Sex differences in the risk of vascular disease associated with diabetes. Biol Sex Differ. 2020;11(1):1. https://doi.org/10.1186/s13293-019-0277-z.

14. Roa-Díaz ZM, Raguindin PF, Bano A, Laine JE, Muka T, Glisic M et al. Menopause and cardiometabolic diseases: What we (don’t) know and why it matters. Maturitas. 2021;152:48–56. https://doi.org/10.1016/j.maturitas.2021.06.01.

15. Kashyap SR, Desouza C, Aroda VR, Kim SH, Neff LM, Wu SS et al. Glycemic and metabolic sub-classification of prediabetes and risk factors for cardiovascular disease in the D2d cohort. Am J Prev Cardiol. 2023;15:100525. https://doi.org/10.1016/j.ajpc.2023.100525.

16. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes – 2020. Diabetes Care. 2020;43(Suppl. 1):S14–S31. https://doi.org/10.2337/dc20-S002.

17. Дедов ИИ, Шестакова МВ, Майоров АЮ, Мокрышева НГ, Андреева ЕН, Безлепкина ОБ и др. Алгоритмы специализированной медицинской помощи больным сахарным диабетом / Под редакцией И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова. 11-й выпуск. Сахарный диабет. 2023;26(2 Suppl.):1–157. https://doi.org/10.14341/DM13042.

18. Richter B, Hemmingsen B, Metzendorf MI, Takwoingi Y. Development of type 2 diabetes mellitus in people with intermediate hyperglycaemia. Cochrane Database Syst Rev. 2018;10(10):CD012661. https://doi.org/10.1002/14651858.CD012661.pub2.

19. Sinning C, Makarova N, Völzke H, Schnabel RB, Ojeda F, Dörr M et al. Association of glycated hemoglobin A1c levels witlwh cardiovascular outcomes in the general population: results from the BiomarCaRE (Biomarker for Cardiovascular Risk Assessment in Europe) consortium. Cardiovasc Diabetol. 2021;20(1):223. https://doi.org/10.1186/s12933-021-01413-4.

20. Reaven GM. Insulin Resistance: The Link Between Obesity and Cardiovascular Disease. Med Clin North Am. 2011;95(5):875–892. https://doi.org/10.1016/j.mcna.2011.06.002.

21. Malmström H, Walldius G, Carlsson S, Grill V, Jungner I, Gudbjörnsdottir S et al. Elevations of metabolic risk factors 20 years or more before diagnosis of type 2 diabetes: Experience from the AMORIS study. Diabetes Obes Metab.2018;20(6):1419–1426. https://doi.org/10.1111/dom.13241.

22. Wagner R, Heni M, Tabák AG, Machann J, Schick F, Randrianarisoa E et al. Pathophysiology-based subphenotyping of individuals at elevated risk for type 2 diabetes. Nat Med. 2021;27:49–57. https://doi.org/10.1038/s41591-020-1116-9.

23. Esser N, Utzschneider KM, Kahn SE. Early beta cell dysfunction vs insulin hypersecretion as the primary event in the pathogenesis of dysglycaemia. Diabetologia. 2020;63(10):2007–2021. https://doi.org/10.1007/s00125-020-05245-x.

24. Mumusoglu S, Yildiz BO. Metabolic Syndrome During Menopause. Curr Vasc Pharmacol. 2019;17(6):595–603. https://doi.org/10.2174/1570161116666180904094149.

25. Paschou SA, Papanas N. Type 2 Diabetes Mellitus and Menopausal Hormone Therapy: An Update. Diabetes Ther. 2019;10(6):2313–2320. https://doi.org/10.1007/s13300-019-00695-y.

26. Song Y, Manson JE, Tinker L, Howard BV, Kuller LH, Nathan L et al. Insulin sensitivity and insulin secretion determined by homeostasis model assessment and risk of diabetes in a multiethnic cohort of women: the Women’s Health Initiative Observational Study. Diabetes Care. 2007;30(7):1747–1752. https://doi.org/10.2337/dc07-0358.

27. Bergman M, Abdul-Ghani M, DeFronzo RA, Manco M, Sesti G, Fiorentino TV et al. Review of methods for detecting glycemic disorders. Diabetes Res Clin Pract. 2020;165:108233. https://doi.org/10.1016/j.diabres.2020.108233.

28. Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27(6):1487–1495. https://doi.org/10.2337/diacare.27.6.1487. https://doi.org/10.14341/omet10082.

29. Руяткина ЛА, Руяткин ДС, Исхакова ИС. Возможности и варианты суррогатной оценки инсулинорезистентности. Ожирение и метаболизм. 2019;16(1):27–33. https://doi.org/10.14341/omet10082.

30. Saif-Ali R, Kamaruddin NA, AL-Habori M, Al-Dubai SA, Wan Ngah WZ. Relationship of metabolic syndrome defined by IDF or revised NCEP ATP III with glycemic control among Malaysians with Type 2 Diabetes. Diabetol Metab Syndr. 2020;12:67. https://doi.org/10.1186/s13098-020-00575-7.

31. Кытикова ОЮ, Антонюк МВ, Кантур ТА, Новгородцева ТП, Денисенко ЮК. Распространенность и биомаркеры метаболического синдрома. Ожирение и метаболизм. 2021;18(3):302–312. https://doi.org/10.14341/omet12704.

32. Lizarzaburu-Robles JC, Herman WH, Garro-Mendiola A, Galdón Sanz-Pastor A, Lorenzo O. Prediabetes and Cardiometabolic Risk: The Need for Improved Diagnostic Strategies and Treatment to Prevent Diabetes and Cardiovascular Disease. Biomedicines. 2024;12(2):363. https://doi.org/10.3390/biomedicines12020363.

33. Cefalu WT. “Prediabetes”: Are There Problems With This Label? No, We Need Heightened Awareness of This Condition! Diabetes Care. 2016;39(8):1472–1477. https://doi.org/10.2337/dc16-1143.

34. Greiner GG, Emmert-Fees KMF, Becker J, Rathmann W, Thorand B, Peters A et al. Toward targeted prevention: Risk factors for prediabetes defined by impaired fasting glucose, impaired glucose tolerance and increased HbA1c in the population-based KORA study from Germany. Acta Diabetol. 2020;57:1481–1491. https://doi.org/10.1007/s00592-020-01573-x.

35. Kautzky-Willer A, Harreiter J, Abrahamian H, Weitgasser R, Fasching P, Hoppichler F, Lechleitner M. Sex and gender-specific aspects in prediabetes and diabetes mellitus-clinical recommendations. Wien Klin Wochenschr. 2019;131(Suppl. 1):221–228. https://doi.org/10.1007/s00508-018-1421-1.

36. Monnier L, Lapinski H, Colette C. Contributions of Fasting and Postprandial Plasma Glucose Increments to the Overall Diurnal Hyperglycemia of Type 2 Diabetic Patients. Diabetes Care. 2003;26(3):881–885. https://doi.org/10.2337/diacare.26.3.881.

37. Xie Q, Kuang M, Lu S, Huang X, Wang C, Zhang S et al. Association between MetS-IR and prediabetes risk and sex differences: a cohort study based on the Chinese population. Front Endocrinol. 2023;14:1175988. https://doi.org/10.3389/fendo.2023.1175988.

38. Wu B, Fan B, Qu Y, Li C, Chen J, Liu Y et al. Trajectories of Blood Lipids Profile in Midlife Women: Does Menopause Matter? J Am Heart Assoc. 2023;12(22):e030388. https://doi.org/10.1161/JAHA.123.030388.

39. Lopez-Yus M, Hörndler C, Borlan S, Bernal-Monterde V, Arbones-Mainar JM. Unraveling adipose tissue dysfunction: molecular mechanisms, novel biomarkers, and therapeutic targets for liver fat deposition. Cells. 2024;13(5):380. https://doi.org/10.3390/cells13050380.

40. Mahgoub MO, Ali II, Adeghate JO, Tekes K, Kalász H, Adeghate EA. An Update on the Molecular and Cellular Basis of Pharmacotherapy in Type 2 Diabetes Mellitus. Int J Mol Sci. 2023;24(11):9328. https://doi.org/10.3390/ijms24119328.

41. Plötz T, Lenzen S. Mechanisms of lipotoxicity-induced dysfunction and death of human pancreatic beta cells under obesity and type 2 diabetes conditions. Obes Rev. 2024;25(5):e13703. https://doi.org/10.1111/obr.13703.

42. Lytrivi M, Castell AL, Poitout V, Cnop M. Recent Insights Into Mechanisms of β-Cell Lipo- and Glucolipotoxicity in Type 2 Diabetes. J Mol Biol. 2020;432(5):1514–1534. https://doi.org/10.1016/j.jmb.2019.09.016.

43. Yoon H, Jeon DJ, Park CE, You HS, Moon AE. Relationship between homeostasis model assessment of insulin resistance and beta cell function and serum 25-hydroxyvitamin D in non-diabetic Korean adults. J Clin Biochem Nutr. 2016;59(2):139–144. https://doi.org/10.3164/jcbn.15-143.

44. Lv C, Sun Y, Zhang ZY, Aboelela Z, Qiu X, Meng ZX. β-cell dynamics in type 2 diabetes and in dietary and exercise interventions. J Mol Cell Biol. 2022;14(7):mjac046. https://doi.org/10.1093/jmcb/mjac046.

45. Cerf ME. High fat programming of beta cell compensation, exhaustion, death and dysfunction. Pediatr Diabetes. 2015;16(2):71–78. https://doi.org/10.1111/pedi.12137.

46. Aston-Mourney K, Proietto J, Morahan G, Andrikopoulos S. Too much of a good thing: why it is bad to stimulate the beta cell to secrete insulin. Diabetologia. 2008;51(4):540–545. https://doi.org/10.1007/s00125-008-0930-2.

47. Zhang L, Zeng L. Non-linear association of triglyceride-glucose index with prevalence of prediabetes and diabetes: a cross-sectional study. Front Endocrinol. 2023;14:1295641. https://doi.org/10.3389/fendo.2023.1295641.

48. Aljawini N, Habib SS. Estimation of Sarcopenia Indices in Women from Saudi Arabia in Relation to Menopause and Obesity: Cross-Sectional Comparative Study. J Clin Med. 2023;12(20):6642. https://doi.org/10.3390/jcm12206642.

49. Guo R, Wei L, Cao Y, Zhao W. Normal triglyceride concentration and the risk of diabetes mellitus type 2 in the general population of China. Front Endocrinol. 2024;15:1330650. https://doi.org/10.3389/fendo.2024.1330650.

50. Xuan X, Hamaguchi M, Cao Q, Okamura T, Hashimoto Y, Obora A et al. U-shaped association between the triglyceride-glucose index and the risk of incident diabetes in people with normal glycemic level: A population-base longitudinal cohort study. Clin Nutr. 2021;40(4):1555–1561. https://doi.org/10.1016/j.clnu.2021.02.037.

51. Saponaro C, Gaggini M, Carli F, Gastaldelli A. The Subtle Balance between Lipolysis and Lipogenesis: A Critical Point in Metabolic Homeostasis. Nutrients. 2015;7(11):9453–9474. https://doi.org/10.3390/nu7115475.

52. Tian X, Zuo Y, Chen S, Liu Q, Tao B, Wu S, Wang A. Triglyceride-Glucose Index is Associated With the Risk of Myocardial Infarction: An 11-Year Prospective Study in the Kailuan Cohort. Cardiovasc Diabetol. 2021;20(1):19. https://doi.org/10.1186/s12933-020-01210-5.

53. Kantartzis K, Fritsche A, Birkenfeld AL. Prediabetes as a therapeutic challenge in internal medicine. Inn Med. 2023;64(7):636–641. https://doi.org/10.1007/s00108-023-01546-6.

54. Nolan CJ, Prentki M. Insulin resistance and insulin hypersecretion in the metabolic syndrome and type 2 diabetes: Time for a conceptual framework shift. Diab Vasc Dis Res. 2019;16(2):118–127. https://doi.org/10.1177/1479164119827611.

55. Nauck MA, Meier JJ, Cavender MA, Abd El Aziz M, Drucker DJ. Cardiovascular Actions and Clinical Outcomes With Glucagon-Like Peptide-1 Receptor Agonists and Dipeptidyl Peptidase-4 Inhibitors. Circulation. 2017;136(9):849–870. https://doi.org/10.1161/CIRCULATIONAHA.117.028136.

56. McDonald S, Ray P, Bunn RC, Fowlkes JL, Thrailkill KM, Popescu I. Heterogeneity and altered β-cell identity in the TallyHo model of early-onset type 2 diabetes. Acta Histochem. 2022;124(7):151940. https://doi.org/10.1016/j.acthis.2022.151940.

57. Rahman SMN, Giacca A. β-Cell Stress Pathways in Diabetes: Potential Targets for Therapy? Endocrinology. 2022;164(2):bqac211. https://doi.org/10.1210/endocr/bqac211.

58. Chen X, Maldonado E, DeFronzo RA, Tripathy D. Impaired Suppression of Glucagon in Obese Subjects Parallels Decline in Insulin Sensitivity and Beta-Cell Function. J Clin Endocrinol Metab. 2021;106(5):1398–1409. https://doi.org/10.1210/clinem/dgab019.

59. Wen S, Wang C, Gong M, Zhou L. An overview of energy and metabolic regulation. Sci China Life Sci. 2018;62(6):771–790. https://doi.org/10.1007/s11427-018-9371-4.

60. Шестакова ЕА, Ильин АВ, Шестакова МВ, Дедов ИИ. Секреция гормонов инкретинового ряда у лиц с факторами риска развития сахарного диабета 2-го типа. Терапевтический архив. 2014;86(10):10–14. https://ter-arkhiv.ru/0040-3660/article/view/31551.

61. Ferrannini E, Muscelli E, Natali A, Gabriel R, Mitrakou A, Flyvbjerg A et al. Relationship between Insulin Sensitivity and Cardiovascular Disease Risk (RISC) Project Investigators. Association of fasting glucagon and proinsulin concentrations with insulin resistance. Diabetologia. 2007;50(11):2342–2347. https://doi.org/10.1007/s00125-007-0806-x.

62. Jamison RA, Stark R, Dong J, Yonemitsu S, Zhang D, Shulman GI, Kibbey RG. Hyperglucagonemia precedes a decline in insulin secretion and causes hyperglycemia in chronically glucose-infused rats. Am J Physiol Endocrinol Metab. 2011;301(6):E1174–1183. https://doi.org/10.1152/ajpendo.00175.2011.

63. Mulvihill EE. Dipeptidyl peptidase inhibitor therapy in type 2 diabetes: Control of the incretin axis and regulation of postprandial glucose and lipid metabolism. Peptides. 2018;100:158–164. https://doi.org/10.1016/j.peptides.2017.11.023.

64. Ferrannini E. A journey in diabetes: from clinical physiology to novel therapeutics: the 2020 Banting medal for scientific achievement lecture. Diabetes. 2021;70(2): 338–346. https://doi.org/10.2337/dbi20-0028.

65. Mittendorfer B, Patterson BW, Smith GI, Yoshino M, Klein S. β cell function and plasma insulin clearance in people with obesity and different glycemic status. J Clin Invest. 2022;132(3):e154068. https://doi.org/10.1172/JCI154068.

66. Calanna S, Scicali R, Di Pino A, Knop FK, Piro S, Rabuazzo AM, Purrello F. Alpha- and beta-cell abnormalities in haemoglobin A1c-defined prediabetes and type 2 diabetes. Acta Diabetol. 2014;51(4):567–575. httpss://doi.org/10.1007/s00592-014-0555-5.

67. Monnier L, Colette C, Dunseath GJ, Owens DR. The loss of postprandial glycemic control precedes stepwise deterioration of fasting with worsening diabetes. Diabetes Care. 2007;30(2):263–269. https://doi.org/10.2337/dc06-1612

68. Martínez MS, Manzano A, Olivar LC, Nava M, Salazar J, D’Marco L et al. The Role of the α Cell in the Pathogenesis of Diabetes: A World beyond the Mirror. Int J Mol Sci. 2021;22(17):9504. https://doi.org/10.3390/ijms22179504.

69. Koufakis T, Papanas N, Zebekakis P, Kotsa K. Treatment options following metformin in primary prevention populations with type 2 diabetes: which is the right road to take? Expert Rev Clin Pharmacol. 2021;14(10):1189–1192. https://doi.org/10.1080/17512433.2021.1942843.

70. Xie Y, Bowe B, Xian H, Loux T, McGill JB, Al-Aly Z. Comparative effectiveness of SGLT2 inhibitors, GLP-1 receptor agonists, DPP-4 inhibitors, and sulfonylureas on risk of major adverse cardiovascular events: Emulation of a randomised target trial using electronic health records. Lancet Diabetes Endocrinol. 2023;11(9):644–656. https://doi.org/10.1016/S2213-8587(23)00171-7.

71. Koufakis T, Zografou I, Doumas M, Kotsa K. The Current Place of DPP4 Inhibitors in the Evolving Landscape of Type 2 Diabetes Management: Is It Time to Bid Adieu? Am J Cardiovasc Drugs. 2023;23(6):601–608. https://doi.org/10.1007/s40256-023-00610-8.

72. Yin R, Xu Y, Wang X, Yang L, Zhao D. Role of Dipeptidyl Peptidase 4 Inhibitors in Antidiabetic Treatment. Molecules. 2022; 27(10):3055. https://doi.org/10.3390/molecules27103055.

73. Su J, Luo Y, Hu S, Tang L, Ouyang S. Advances in Research on Type 2 Diabetes Mellitus Targets and Therapeutic Agents. Int J Mol Sci. 2023;24(17):13381. https://doi.org/10.3390/ijms241713381.

74. Saini K, Sharma S, Khan Y. DPP-4 inhibitors for treating T2DM – hype or hope? an analysis based on the current literature. Front Mol Biosci. 2023;10:1130625. https://doi.org/10.3389/fmolb.2023.1130625.

75. Takamiya Y, Kobayashi K, Kudo T, Okuda T, Okamura K, Shirai K, Urata H. Comprehensive Efficacy of the Dipeptidyl Peptidase 4 Inhibitor Alogliptin in Practical Clinical Settings: A Prospective Multi-Center Interventional Observational Study. J Clin Med Res. 2020;12(7):423–430. https://doi.org/10.14740/jocmr4224.

76. Nishimura R, Osonoi T, Koike Y, Miyata K, Shimasaki Y. A Randomized Pilot Study of the Effect of Trelagliptin and Alogliptin on Glycemic Variability in Patients with Type 2 Diabetes. Adv Ther. 2019;36(11):3096–3109. https://doi.org/10.1007/s12325-019-01097-z.

77. Subrahmanyan NA, Koshy RM, Jacob K, Pappachan JM. Efficacy and Cardiovascular Safety of DPP-4 Inhibitors. Curr Drug Saf. 2021;16(2):154–164. https://doi.org/10.2174/1574886315999200819150544.

78. Feng J, Zhang Z, Wallace MB, Stafford JA, Kaldor SW, Kassel DB et al. Discovery of alogliptin: a potent, selective, bioavailable, and efficacious inhibitor of dipeptidyl peptidase IV. J Med Chem. 2007;50(10):2297–2300. https://doi.org/10.1021/jm070104l.

79. Zhu J, Zhou Y, Li Q, Wang G. Cost-Effectiveness of Newer Antidiabetic Drugs as Second-Line Treatment for Type 2 Diabetes: A Systematic Review. Adv Ther. 2023;40(10):4216–4235. https://doi.org/10.1007/s13300-016-0206-7.

80. Ueki K, Tanizawa Y, Nakamura J, Yamada Y, Inagaki N, Watada H et al. Longterm safety and efficacy of alogliptin, a DPP-4 inhibitor, in patients with type 2 diabetes: a 3-year prospective, controlled, observational study (J-BRAND Registry). BMJ Open Diabetes Res Care. 2021;9(1):e001787. https://doi.org/10.1136/bmjdrc-2020-001787.

81. Takebayashi K, Suzuki T, Naruse R, Hara K, Suetsugu M, Tsuchiya T, Inukai T. Long-Term Effect of Alogliptin on Glycemic Control in Japanese Patients With Type 2 Diabetes: A 3.5-Year Observational Study. J Clin Med Res. 2017;9(9):802–808. https://doi.org/10.14740/jocmr3118w.

82. Chai S, Zhang R, Carr RD, Deacon CF, Zheng Y, Rajpathak S et al. Impact of dipeptidyl peptidase-4 inhibitors on glucose-dependent insulinotropic polypeptide in type 2 diabetes mellitus: a systematic review and meta-analysis. Front Endocrinol. 2023;14:1203187. https://doi.org/10.3389/fendo.2023.1203187.

83. Lyu X, Zhu X, Zhao B, Du L, Chen D, Wang C et al. Effects of dipeptidyl peptidase-4 inhibitors on beta-cell function and insulin resistance in type 2 diabetes: meta-analysis of randomized controlled trials. Sci Rep. 2017;21(7):44865. https://doi.org/10.1038/srep44865.

84. Wu S, Gao L, Cipriani A, Huang Y, Yang Z, Yang J et al. The effects of incretinbased therapies on β-cell function and insulin resistance in type 2 diabetes: A systematic review and network meta-analysis combining 360 trials. Diabetes Obes Metab. 2019;21(4):975–983. https://doi.org/10.1111/dom.13613.

85. Шестакова МВ, Шестакова ЕА, Качко ВА. Особенности применения алоглиптина у различных групп пациентов с сахарным диабетом 2 типа: дополнительные результаты исследования ENTIRE. Проблемы эндокринологии. 2020;66(2):49–60. https://doi.org/10.14341/probl12273.

86. Barchetta I, Cimini FA, Dule S, Cavallo MG. Dipeptidyl Peptidase 4 (DPP4) as A Novel Adipokine: Role in Metabolism and Fat Homeostasis. Biomedicines. 2022;10(9):2306. https://doi.org/10.3390/biomedicines10092306.

87. Kutoh E, Kuto AN, Akiyama M, Ozawa E, Kurihara R. Alogliptin: a DPP-4 inhibitor modulating adipose tissue insulin resistance and atherogenic lipid. Eur J Clin Pharmacol. 2023;79(7):947–959. https://doi.org/10.1007/s00228-023-03506-3.

88. Kutoh E, Kaneoka N, Hirate M. Alogliptin: a new dipeptidyl peptidase-4 inhibitor with potential anti-atherogenic properties. Endocr Res. 2015;40(2):88–96. https://doi.org/10.3109/07435800.2014.952743.

89. Lu S, Wang Q, Lu H, Kuang M, Zhang M, Sheng G et al. Lipids as potential mediators linking body mass index to diabetes: evidence from a mediation analysis based on the NAGALA cohort. BMC Endocr Disord. 2024;24(1):66. https://doi.org/10.1186/s12902-024-01594-5.

90. Fu WJ, Huo JL, Mao ZH, Pan SK, Liu DW, Liu ZS et al. Emerging role of antidiabetic drugs in cardiorenal protection. Front Pharmacol. 2024;15:1349069. https://doi.org/10.3389/fphar.2024.1349069.

91. Ferreira JP, Mehta C, Sharma A, Nissen SE, Rossignol P, Zannad F. Alogliptin after acute coronary syndrome in patients with type 2 diabetes: a renal function stratified analysis of the EXAMINE trial. BMC Med. 2020;18(1):165. https://doi.org/10.1186/s12916-020-01616-8.

92. Mita T, Katakami N, Yoshii H, Onuma T, Kaneto H, Osonoi T et al. Long-term efficacy and safety of early alogliptin initiation in subjects with type 2 diabetes: an extension of the SPEAD-A study. Sci Rep. 2023;13(1):14649. https://doi.org/10.1038/s41598-023-41036-1.

93. Lv Q, Yang Y, Lv Y, Wu Q, Hou X, Li L et al. Long-term effects of different hypoglycemic drugs on carotid intima-media thickness progression: a systematic review and network meta-analysis. Front Endocrinol. 2024;15:1403606. https://doi.org/10.3389/fendo.2024.1403606.

94. Beulens J, Rutters F, Rydén L, Schnell O, Mellbin L, Hart HE, Vos RC. Risk and management of pre-diabetes. Eur J Prev Cardiol. 2019;26(2):47–54. https://doi.org/10.1177/2047487319880041.

95. Руяткин ДС, Руяткина ЛА, Щербакова ЛВ. Фенотип формирования метаболического синдрома в перименопаузальной когорте женщин без дисгликемии в зависимости от наличия артериальной гипертензии. Journal of Siberian Medical Sciences. 2023;7(3):37–53. https://doi.org/10.31549/2542-1174-2023-7-3-37-53.

96. Ji L, Chan JCN, Yu M, Yoon KH, Kim SG, Choi SH et al. Early combination versus initial metformin monotherapy in the management of newly diagnosed type 2 diabetes: An East Asian perspective. Diabetes Obes Metab. 2021;23(1):3–17. https://doi.org/10.1111/dom.14205.

97. Kim JY, Kim NH. Initial Combination Therapy in Type 2 Diabetes. Endocrinol Metab. 2024;39(1):23–32. https://doi.org/10.3803/EnM.2023.1816.

98. Tomovic K, Lazarevic J, Kocic G, Deljanin-Ilic M, Anderluh M, Smelcerovic A. Mechanisms and pathways of anti-inflammatory activity of DPP-4 inhibitors in cardiovascular and renal protection. Med Res Rev. 2019;39(1):404–422. https://doi.org/10.1002/med.21513.


Рецензия

Для цитирования:


Руяткина ЛА, Руяткин ДС, Щербакова ЛВ, Исхакова ИС. Вектор гликированного гемоглобина в формировании дисгликемии в постменопаузе: акценты ранней диагностики и терапии. Медицинский Совет. 2024;(16):135-147. https://doi.org/10.21518/ms2024-394

For citation:


Ruyatkina LA, Ruyatkin DS, Shcherbakova LV, Iskhakova IS. Vector of glycated hemoglobin in the formation of dysglycemia in postmenopause: Emphasis on early diagnosis and therapy. Meditsinskiy sovet = Medical Council. 2024;(16):135-147. (In Russ.) https://doi.org/10.21518/ms2024-394

Просмотров: 144


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)