Препараты сердечно-сосудистого профиля и состояние тканей пародонта
https://doi.org/10.21518/ms2024-369
Аннотация
Лица с сердечно-сосудистыми заболеваниями (ССЗ), в основном старше 50 лет, регулярно принимают такие лекарства, как бета-блокаторы (ББ), ингибиторы ангиотензинпревращающего фермента (иАПФ), блокаторы кальциевых каналов (БКК), блокаторы рецепторов ангиотензина II (БРА), статины и ацетилсалициловую кислоту (АСК). Болезни тканей пародонта (БТП) встречаются в возрастной группе 35–44 лет в 60% случаев, в группе людей 65–74 лет – около 70%, т. е. в том периоде жизни, когда начинают развиваться и прогрессировать ССЗ. Некоторые кардиопротекторные препараты, такие как антигипертензивные средства, вызывают ксеростомию. Медикаментозная ксеростомия является одной из распространенных причин проблем, связанных со здоровьем полости рта у пожилых людей, которые находятся на длительной лекарственной терапии. Ксеростомия является распространенным изнурительным состоянием, которое вызывает такие проблемы, как дисфагия, потеря вкуса и боль в полости рта, а также увеличивает риск кариеса зубов и инфекции полости рта. Лекарственно-индуцированное разрастание десен (ЛИРД) представляет собой патологическую гипертрофию десны, которая может быть вызвана рядом лекарственных препаратов, в т. ч. и БКК. ЛИРД характеризуется накоплением соединительной ткани, которое в первую очередь поражает передние отделы верхней и нижней челюсти, а также вызывает проблемы с поддержанием гигиены полости рта, что приводит к восприимчивости к инфекциям и заболеваниям пародонта и может привести к потере зубов. Антикоагулянты, используемые при ССЗ ввиду риска развития кровоточивости, требуют особых подходов при профилактике и терапии БТП. Рассматриваются возможности использования статинов при БТП за счет плейотропных свойств, не зависящих от гиполипидемического действия. Обзорная статья посвящена влиянию препаратов сердечно-сосудистого профиля на состояние тканей пародонта и механизмов развития побочных эффектов, а также возможностям использования статинов с учетом их плейотропных эффектов.
Об авторах
А. И. СабироваРоссия
Сабирова Азиза Ибрагимовна, к.м.н., доцент, кафедра хирургической стоматологии
720000, Кыргызстан, Бишкек, ул. Киевская, д. 44
О. О. Каршина
Россия
Каршина Олеся Олеговна, старший преподаватель, кафедра терапии №2, специальность «Лечебное дело»
720000, Кыргызстан, Бишкек, ул. Киевская, д. 44
И. С. Сабиров
Россия
Сабиров Ибрагим Самижонович, д.м.н., профессор, заведующий кафедрой терапии №2, специальность «Лечебное дело»
720000, Кыргызстан, Бишкек, ул. Киевская, д. 44
Список литературы
1. Bascones-Martinez A, Munoz-Corcuera M, Bascones-Ilundain C. Side effects of drugs on the oral cavity. Medicina Clínica. 2015;144(3):126–131. https://doi.org/10.1016/j.medcli.2014.01.025.
2. Tan ECK, Lexomboon D, Sandborgh-Englund G, Haasum Y, Johnell K. Medications That Cause Dry Mouth As an Adverse Effect in Older People: A Systematic Review and Metaanalysis. J Am Geriatr Soc. 2018;66(1):76–84. https://doi.org/10.1111/jgs.15151.
3. Ouanounou A. Xerostomia in the Geriatric Patient: Causes, Oral Manifestations, and Treatment. Compend Contin Educ Dent. 2016;37(5):306–311. Available at: https://pubmed.ncbi.nlm.nih.gov/27213776.
4. Habbab K, Moles D, Porter S. Potential oral manifestations of cardiovascular drugs. Oral Dis. 2010;16:769–773. https://doi.org/10.1111/j.1601-0825.2010.01686.x.
5. Eltas A, Kartalcı S, Eltas S, Dündar S, Uslu M. An assessment of periodontal health in patients with schizophrenia and taking antipsychotic medication. Int J Dent Hyg. 2013;11(2):78–83. https://doi.org/10.1111/j.1601-5037.2012.00558.x.
6. Katz J, Michalek S. Effect of immune T cells derived from mucosal or systemic tissue on host responses to Porphyromonas gingivalis.Oral Microbiol. Immunol. 1998;13:73–80. https://doi.org/10.1111/j.1399-302X.1998.tb00716.x.
7. Tsutamoto T, Wada A, Maeda K, Mabuchi N, Hayashi M, Tsutsui T et al. Angiotensin II type 1 receptor antagonist decreases plasma levels of tumor necrosis factor alpha, interleukin-6 and soluble adhesion molecules in patients with chronic heart failure. J Am Coll Cardiol. 2000;35(3):714–721. https://doi.org/10.1016/s0735-1097(99)00594-x.
8. Marques-Vidal P, Vollenweider P, Waeber G. Angiotensin receptor blockers are not associated with reduced inflammatory markers in the general population. J Hypertens. 2015;33:2173–2178. https://doi.org/10.1097/HJH.0000000000000683.
9. Ustaoğlu G, Erdal E, Karaş Z. Influence of different anti-hypertensive drugs on gingival overgrowth: A cross-sectional study in a Turkish population. Oral Dis. 2021;27(5):1313–1319. https://doi.org/10.1111/odi.13655.
10. Livada R, Shiloah J. Calcium channel blocker-induced gingival enlargement. J Hum Hypertens. 2014;28(1):10–14. https://doi.org/10.1038/jhh.2013.47.
11. Hatahira H, Abe J, Hane Y, Matsui T, Sasaoka S, Motooka Y et al. Drug-induced gingival hyperplasia: a retrospective study using spontaneous reporting system databases. J Pharm Health Care Sci. 2017;3:19. https://doi.org/10.1186/s40780-017-0088-5.
12. Somacarrera M, Hernández G, Acero J, Moskow B.S. Factors related to the incidence and severity of cyclosporin-induced gingival overgrowth in transplant patients. A longitudinal study. J Periodonto. l994;65(7):671–675. https://doi.org/10.1902/jop.1994.65.7.671.
13. Sabarudin M, Taib H. Drug-influenced Gingival Enlargement: Overview of the Clinical Features and Assessment Methods. J Dentists. 2019;7:1–7. https://doi.org/10.12974/2311-8695.2019.07.1.
14. Rapone B, Ferrara E, Santacroce L, Cesarano F, Arazzi M, Liberato LD et al. Periodontal Microbiological Status Influences the Occurrence of Cyclosporine-A and Tacrolimus-Induced Gingival Overgrowth. Antibiotics. 2019;8(3):124. https://doi.org/10.3390/antibiotics8030124.
15. Meisel P, Giebel J, Kunert-Keil C, Dazert P, Kroemer H, Kocher T. MDR1 gene polymorphisms and risk of gingival hyperplasia induced by calcium antagonists. Clin Pharmacol Ther. 2006;79(1):62–71. https://doi.org/10.1016/j.clpt.2005.09.008.
16. Dongari-Bagtzoglou A. Research, Science and Therapy Committee, American Academy of Periodontology. Drug-associated gingival enlargement. J Periodontol. 2004;75(10):1424–1431. https://doi.org/10.1902/jop.2004.75.10.1424.
17. Bajkovec L, Mrzljak A, Likic R, Alajbeg I. Drug-induced gingival overgrowth in cardiovascular patients. World J Cardiol. 2021;13(4):68–75. https://doi.org/10.4330/wjc.v13.i4.68.
18. Duncan M, Berman B. Stimulation of collagen and glycosaminoglycan production in cultured human adult dermal fibroblasts by recombinant human interleukin-6. J Invest Dermatol. 1991;97(4):686–692. https://doi.org/10.1111/1523-1747.ep12483971.
19. Goriuc A, Foia L, Minea B, Luchian A, Surdu A, Toma V et al. Drug-induced gingival hyperplasia – experimental model. Rom J Morphol Embryol. 2017;58(4):1371–1376. Available at: https://pubmed.ncbi.nlm.nih.gov/29556630.
20. Deliliers G, Santoro F, Polli N, Bruno E, Fumagalli L, Risciotti E. Light and electron microscopic study of cyclosporin A-induced gingival hyperplasia. J Periodontol. 1986;57(12):771–775. https://doi.org/10.1902/jop.1986.57.12.771.
21. Ellis J, Seymour R, Taylor J, Thomason J. Prevalence of gingival overgrowth in transplant patients immunosuppressed with tacrolimus. J Clin Periodontol. 2004;31(2):126–131. https://doi.org/10.1111/j.0303-6979.2004.00459.x.
22. Lu HK, Tseng CC, Lee YH, Li CL, Wang LF. Flutamide inhibits nifedipine- and interleukin-1 beta-induced collagen overproduction in gingival fibroblasts. J Periodontal Res. 2010;45(4):451–457. https://doi.org/10.1111/j.1600-0765.2009.01255.x.
23. Lederman D, Lumerman H, Reuben S, Freedman P. Gingival hyperplasia associated with nifedipine therapy. Report of a case. Oral Surg Oral Med Oral Pathol. 1984;57(6):620–622. https://doi.org/10.1016/0030-4220(84)90283-4.
24. Marshall R, Bartold P. A clinical review of drug-induced gingival overgrowths. Aust Dent J. 1999;44(4):219–232. https://doi.org/10.1111/j.1834-7819.1999.tb00224.x.
25. Meisel P, Schwahn C, John U, Kroemer H, Kocher T. Calcium antagonists and deep gingival pockets in the population-based SHIP study. Br J Clin Pharmacol. 2005;60(5):552–559. https://doi.org/10.1111/j.1365-2125.2005.02485.x.
26. Ellis J, Seymour R, Steele J, Robertson P, Butler T, Thomason JM. Prevalence of gingival overgrowth induced by calcium channel blockers: a communitybased study. J Periodontol. 1999;70(1):63–67. https://doi.org/10.1902/jop.1999.70.1.63.
27. Fattore L, Stablein M, Bredfeldt G, Semla T, Moran M, Doherty-Greenberg JM. Gingival hyperplasia: a side effect of nifedipine and diltiazem. Spec Care Dentist. 1991;11(3):107–109. https://doi.org/10.1111/j.1754-4505.1991.tb00828.x.
28. Nery EB, Edson RG, Lee KK, Pruthi VK, Watson J. Prevalence of nifedipineinduced gingival hyperplasia. J Periodontol. 1995;66(7):572–578. https://doi.org/10.1902/jop.1995.66.7.572.
29. Andrew W, Evelyn W, Francis M, Mark J, Mark C. Pattern of Gingival Overgrowth among Patients on Antihypertensive Pharmacotherapy at a Nairobi Hospital in Kenya. Open J Stomato. 2014;4(4):169–173. https://doi.org/10.4236/ojst.2014.44025.
30. Pradhan S, Mishra P. Gingival enlargement in antihypertensive medication. JNMA. 2009;48(174):149–152. Available at: https://pubmed.ncbi.nlm.nih.gov/20387357.
31. Lucas R, Howell L, Wall B. Nifedipine-induced gingival hyperplasia. A histochemical and ultrastructural study. J Periodontol. 1985;56(4):211–215. https://doi.org/10.1902/jop.1985.56.4.211.
32. Trackman P, Kantarci A. Molecular and clinical aspects of drug-induced gingival overgrowth. J Dent Res. 2015;94(4):540–546. https://doi.org/10.1177/0022034515571265.
33. Mishra M, Khan Z, Mishra S. Gingival overgrowth and drug association: A review. Indian J Med Sci. 2011;65(2):73–82. https://doi.org/10.4103/0019-5359.103971.
34. Barak S, Engelberg I, Hiss J. Gingival hyperplasia caused by nifedipine. Histopathologic findings. J Periodontol. 1987;58(9):639–642. https://doi.org/10.1902/jop.1987.58.9.639.
35. Sucu M, Yuce M, Davutoglu V. Amlodipine-induced massive gingival hypertrophy. Can Fam Physician. 2011;57(4):436–437. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076474.
36. Lauritano D, Lucchese A, Di Stasio D, Della F, Cura F, Palmieri A, Carinci F. Molecular Aspects of Drug-Induced Gingival Overgrowth: An In Vitro Study on Amlodipine and Gingival Fibroblasts. Int J Mol Sci. 2019;20(8):2047. https://doi.org/10.3390/ijms20082047.
37. Lafzi A, Farahani R, Shoja M. Amlodipine-induced gingival hyperplasia. Med Oral Patol Oral Cir Bucal. 2006;11(6):E480–E482. Available at: https://pubmed.ncbi.nlm.nih.gov/17072250.
38. Gaur S, Agnihotri R. Is dental plaque the only etiological factor in Amlodipine induced gingival overgrowth? A systematic review of evidence. J Clin Exp Dent. 2018;10(6):e610-e619. https://doi.org/10.4317/jced.54715.
39. Nanda T, Singh B, Sharma P, Arora K. Cyclosporine A and amlodipine induced gingival overgrowth in a kidney transplant recipient: Case presentation with literature review. BMJ Case Report. 2019;12(5):e229587. https://doi.org/10.1136/bcr-2019-229587.
40. Miller C, Damm D. Incidence of verapamil-induced gingival hyperplasia in a dental population. J Periodontol. 1992;63(5):453–456. https://doi.org/10.1902/jop.1992.63.5.453.
41. Pernu H, Oikarinen K, Hietanen J, Knuuttila M. Verapamil-induced gingival overgrowth: A clinical, histologic, and biochemic approach. J Oral Pathol Med. 1989;18(7):422–425. https://doi.org/10.1111/j.1600-0714.1989.tb01576.x.
42. Fardal Ø, Lygre H. Management of periodontal disease in patients using calcium channel blockers – gingival overgrowth, prescribed medications, treatment responses and added treatment costs. J Clin Periodontol. 2015;42(7):640–646. https://doi.org/10.1111/jcpe.12426.
43. Гороховская ГН, Юн ВЛ. Антитромбоцитарная терапия: современное представление и комплексный подход к проблеме атеротромбоза. РМЖ. 2013;(34):1737. Режим доступа:www.rmj.ru/articles/khirurgiya/Antitrombocitarnaya_terapiya_sovremennoe_predstavlenie_i_kompleksnyy_podhod_k_probleme_aterotromboza/#ixzz7dAwgDDZF.
44. Doganay O, Atalay B, Karadag E, Aga U, Tugrul M. Bleeding frequency of patients taking ticagrelor, aspirin, clopidogrel, and dual antiplatelet therapy after tooth extraction and minor oral surgery. J Am Dent Assoc. 2018;149(2):132–138. https://doi.org/10.1016/j.adaj.2017.09.052.
45. Napenas J, Hong C, Brennan M, Furney S, Fox P, Lockhart P. The frequency of bleeding complications after invasive dental treatment in patients receiving single and dual antiplatelet therapy. J Am Dent Assoc. 2009;140(6):690–695. https://doi.org/10.14219/jada.archive.2009.025.
46. Shi Q, Xu J, Zhang T, Zhang B, Liu H. Post-operative Bleeding Risk in Dental Surgery for Patients on Oral Anticoagulant Therapy: A Meta-analysis of Observational Studies. Front Pharmacol. 2017;8:58. https://doi.org/10.3389/fphar.2017.00058.
47. Yang S, Shi Q, Liu J, Li J, Xu J. Should oral anticoagulant therapy be continued during dental extraction? A meta-analysis. BMC Oral Health. 2016;16(1):81. https://doi.org/10.1186/s12903-016-0278-9.
48. Biedermann J, Rademacher W, Hazendonk H, van Diermen D, Leebeek F, Rozema F, Kruip M. Predictors of oral cavity bleeding and clinical outcome after dental procedures in patients on vitamin K antagonists. A cohort study. Thromb Haemost. 2017;117(7):1432–1439. https://doi.org/10.1160/TH17-01-0040.
49. Madrid C, Sanz M. What influence do anticoagulants have on oral implant therapy? A systematic review. Clinical Oral Implants Research. 2019;20(4):96–106. https://doi.org/10.1111/j.1600-0501.2009.01770.x.
50. Kwak E, Nam S, Park K., Kim S., Huh J, Park W. Bleeding related to dental treatment in patients taking novel oral anticoagulants (NOACs): a retrospective study. Clin Oral Investig. 2019;23(1):477–484. https://doi.org/10.1007/s00784-018-2458-2.
51. Miclotte I, Vanhaverbeke M, Agbaje J, Legrand P, Vanassche T, Verhamme P, Politis C. Pragmatic approach to manage new oral anticoagulants in patients undergoing dental extractions: a prospective case-control study. Clinical Oral Investigations. 2017;21(7):2183–2188. https://doi.org/10.1007/s00784-016-2010-1.
52. Perry D, Noakes T, Helliwell P. British Dental Society. Guidelines for the management of patients on oral anticoagulants requiring dental surgery. British Dental Journal. 2007;203:389–393. https://doi.org/10.1038/bdj.2007.892.
53. Valgimigli M, Bueno H, Byrne R, Collet J, Costa F, Jeppsson A et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS. Eur J Cardiothorac Surg. 2018;53(1):34–78. https://doi.org/10.1093/ejcts/ezx334.
54. Steffel J, Verhamme P, Potpara T, Albaladejo P, Antz M, Desteghe L et al. The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation: executive summary. Europace. 2018;20(8):1231–1242. https://doi.org/10.1093/europace/euy054.
55. Steffel J, Verhamme P, Potpara T, Albaladejo P, Antz M, Desteghe L et al. The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Eur Heart J. 2018;39(16):1330–1393. https://doi.org/10.1093/eurheartj/ehy136.
56. Rosenberg D, Vega M, Chaparro A, Kernitsky J, Andrade C, ViolantD, NartJ. Association between the use of statins and periodontal status: a review. Clin Periodoncia Implantol Rehabil. 2019;12(1):36–42. https://doi.org/10.4067/S0719-01072019000100041.
57. Cicek A, Ilarslan Y, Erman B, Sarkarati B, Tezcan I, Karabulut E et al. Statins and IL-1β, IL-10, and MPO Levels in Gingival Crevicular Fluid: Preliminary Results. Inflammation. 2016;39:1547–1557. https://doi.org/10.1007/s10753-016-0390-7.
58. Bertl K, Steiner I, Pandis N, Buhlin K, Klinge B, Stavropoulos A. Statins in nonsurgical and surgical periodontal therapy. A systematic review and meta-analysis of preclinical in vivo trials. J Periodontal Res. 2018;53(3):267–287. https://doi.org/10.1111/jre.12514.
59. Muniz FWMG, Taminski K, Cavagni J, Celeste RK, Weidlich P, Rösing CK. The effect of statins on periodontal treatment-a systematic review with meta-analyses and meta-regression. Clin Oral Investig. 2018;22(2):671–687. https://doi.org/10.1007/s00784-018-2354-9.
60. Saver B, Hujoel P, Cunha-Cruz J, Maupome G. Are statins associated with decreased tooth loss in chronic periodontitis? J Clin Periodontol. 2007;34(3):214–219. https://doi.org/10.1111/j.1600-051X.2006.01046.x.
61. Saxlin T, Suominen-Taipale L, Knuuttila M, Alha P, Ylöstalo P. Dual effect of statin medication on the periodontium. J Clin Periodontol. 2009;36(12):997–1003. https://doi.org/10.1111/j.1600-051X.2009.01484.x.
62. Gómez-Fernández P. Estatinas y efectos beneficiosos. Medicina Clinica. 2005;125(15):578–579. https://doi.org/10.1157/13080660.
63. Paumelle R, Blanquart C, Briand O, Barbier O, Duhem C, Woerly G et al. Acute antiinflammatory properties of statins involve peroxisome proliferator-activated receptor-alpha via inhibition of the protein kinase C signaling pathway. Circ Res. 2006;98(3):361–369. https://doi.org/10.1161/01.RES.0000202706.70992.95.
64. Balli U, Keles GC, Cetinkaya BO, Mercan U, Ayas B, Erdogan D. Assessment of vascular endothelial growth factor and matrix metalloproteinase-9 in the periodontium of rats treated with atorvastatin. J Periodontol. 2014;85(1):178–187. https://doi.org/10.1902/jop.2013.130018.
65. Maeda T, Kawane T, Horiuchi N. Statins augment vascular endothelial growth factor expression in osteoblastic cells via inhibition of protein prenylation. Endocrinology. 2003;144(2):681–692. https://doi.org/10.1210/en.2002-220682.
66. Yamaguchi A, Komori T, Suda T. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr Rev. 2000;21(4):393–411. https://doi.org/10.1210/edrv.21.4.0403.
67. Liu C, Wu Z, Sun H. The effect of simvastatin on mRNA expression of transforming growth factor-beta1, bone morphogenetic protein-2 and vascular endothelial growth factor in tooth extraction socket. Int J Oral Sci. 2009;1(2):90–98. https://doi.org/10.4248/ijos.08011.
68. Bracht L, Caparroz-Assef SM, Magon T, Ritter A, Cuman R, Bersani-Amado C. Topical anti-inflammatory effect of hypocholesterolaemic drugs. J Pharm Pharmacol. 2011;63(7):971–975. https://doi.org/10.1111/j.2042-7158.2011.01302.x.
69. Pradeep A, Karvekar S, Nagpal K, Patnaik K, Guruprasad C, Kumaraswamy K. Efficacy of locally delivered 1.2% rosuvastatin gel to non-surgical treatment of patients with chronic periodontitis: a randomized, placebocontrolled clinical trial. J Periodontol. 2015;86(6):738–745. https://doi.org/10.1902/jop.2015.140631.
Рецензия
Для цитирования:
Сабирова АИ, Каршина ОО, Сабиров ИС. Препараты сердечно-сосудистого профиля и состояние тканей пародонта. Медицинский Совет. 2024;(16):317-324. https://doi.org/10.21518/ms2024-369
For citation:
Sabirova AI, Karshina OO, Sabirov IS. Cardiovascular profile drugs and the state of periodontal tissues. Meditsinskiy sovet = Medical Council. 2024;(16):317-324. (In Russ.) https://doi.org/10.21518/ms2024-369