Preview

Meditsinskiy sovet = Medical Council

Advanced search

Predictors of Malignant Lymph Node Involvement in paediatric patients: Analysis of 217 Cases

https://doi.org/10.21518/ms2024-439

Abstract

Introduction. Diagnosing cervical lymphadenopathy in children with a history of oncological or immunopathological conditions is challenging, often resulting in overtreatment. This study analyses ultrasound-based differential diagnostics for lymphadenopathy in this patient group.

Aim. To improve diagnostic accuracy for cervical lymphadenopathy in children with a history of oncological or immunopathological conditions.

Materials and methods. A retrospective analysis was performed on clinical and demographic data from 217 paediatric patients diagnosed with cervical lymphadenopathy. These patients underwent excisional lymph node biopsy and/or lymphadenectomy between December 2017 and December 2022. The cohort was divided into Group A (benign lymphadenopathy; n = 92) and Group B (malignant lymphadenopathy; n = 125).

Results. Significant predictors of malignant lymphadenopathy were identified, including “Lymph Node Configuration Index ≤ 2” (increasing the odds by 4.4–5.1 times), “Short Axis of Lymph Node > 10 mm” (OR 2.5–2.8), “Specific Therapy Prior to Lymph Node Removal” (OR 6.9–7.2), “Absence of Lymph Node Differentiation” (OR 2.2–2.4), “Presence of Intranodal Microcalcifications” (OR 14.1–16.3), “Increased Vascularisation of the Lymph Node” (OR 2.0–2.6), “Overall Hypoechogenicity” (OR 2.4), and “Formation of Conglomerates” (OR 3.6). Predictive models integrating these factors demonstrated strong accuracy, with an informational capacity of 81.1% (p < 0.001), sensitivity between 79.3% and 82.6%, and specificity from 80.0% to 82.4%.

Discussion. The comprehensive analysis of predictive factors for malignant lymphadenopathy in patients with a history of oncological or immunopathological diseases suggests that no single ultrasound risk factor should be the sole basis for differential diagnosis, supporting earlier findings.

Conclusion. The predictive models provide a standardised, robust approach for assessing malignant lymph node involvement, improving diagnostic accuracy in paediatric patients with oncological or immunopathological histories.

About the Authors

G. A. Polev
Dmitry Rogachev National Medical Research Center for Children’s Hematology, Oncology and Immunology; Ilyinskaya Hospital
Russian Federation

Georgiy A. Polev - Cand. Sci. (Med.), Senior Researcher of the Department of Head and Neck Surgery and Reconstructive Plastic Surgery, Dmitry Rogachev NMRC for Children’s Hematology, Oncology and Immunology; Director of the Head and Neck Surgery Center, Ilyinskaya Hospital.

1, Samora Mashel St., Moscow, 117997; 2, Bldg. 2, Rublevskoe Predmestie St., Glukhovo Settlement, Krasnogorsk, 143421



R. S. Oganesyan
Dmitry Rogachev National Medical Research Center for Children’s Hematology, Oncology and Immunology
Russian Federation

Raisa S. Oganesyan - Pediatric Surgeon of the Department of Oncologe, Head and Neck Surgery and Neurosurgery.

1, Samora Mashel St., Moscow, 117997



E. Yu. Yaremenko
Dmitry Rogachev National Medical Research Center for Children’s Hematology, Oncology and Immunology
Russian Federation

Ekaterina Yu. Yaremenko - Laboratory Assistant of the Department of Head and Neck Surgery and Reconstructive Plastic Surgery.
1, Samora Mashel St., Moscow, 117997



N. S. Grachev
Dmitry Rogachev National Medical Research Center for Children’s Hematology, Oncology and Immunology
Russian Federation

Nikolai S. Grachev - Dr. Sci. (Med.), Professor, Director General

1, Samora Mashel St., Moscow, 117997



References

1. Park YW. Evaluation of neck masses in children. Am Fam Physician. 1995;51(8):1904–1912. Available at: https://pubmed.ncbi.nlm.nih.gov/7762481.

2. Weinstock MS, Patel NA, Smith LP. Pediatric Cervical Lymphadenopathy. Pediatr Rev. 2018;39(9):433–443. https://doi.org/10.1542/pir.2017-0249.

3. Sarsu SB, Sahin K. A retrospective evaluation of lymphadenopathy in children in a single center’s experience. J Pak Med Assoc. 2016;66(6):654–657. Available at: https://pubmed.ncbi.nlm.nih.gov/27339563.

4. Herzog LW. Prevalence of lymphadenopathy of the head and neck in infants and children. Clin Pediatr. 1983;22(7):485–487. https://doi.org/10.1177/000992288302200703.

5. Berce V, Rataj N, Dorič M, Zorko A, Kolarič T. Association between the Clinical, Laboratory and Ultrasound Characteristics and the Etiology of Peripheral Lymphadenopathy in Children. Child. 2023;10(10):1589. https://doi.org/10.3390/children10101589.

6. Bozlak S, Varkal MA, Yildiz I, Toprak S, Karaman S, Erol OB et al. Cervical lymphadenopathies in children: A prospective clinical cohort study. Int J Pediatr Otorhinolaryngol. 2016;82:81–87. https://doi.org/10.1016/j.ijporl.2016.01.002.

7. Deosthali A, Donches K, DelVecchio M, Aronoff S. Etiologies of Pediatric Cervical Lymphadenopathy: A Systematic Review of 2687 Subjects. Glob Pediatr Heal. 2019;6:2333794X19865440. https://doi.org/10.1177/2333794X19865440.

8. Celenk F, Gulsen S, Baysal E, Aytac I, Kul S, Kanlikama M. Predictive factors for malignancy in patients with persistent cervical lymphadenopathy. Eur Arch Otorhinolaryngol. 2016;273(1):251–256. https://doi.org/10.1007/s00405-015-3717-3.

9. Sgro JM, Campisi ES, Selvam S, Greer MC, Alexander S, Ngan B, Campisi P. Cervical lymph node biopsies in the evaluation of children with suspected lymphoproliferative disorders: Experience in a tertiary pediatric setting. J Pediatr Surg. 2022;57(8):1525–1531. https://doi.org/10.1016/j.jpedsurg.2021.08.024.

10. Zhang W, Peng J, Zhao S, Wu W, Yang J, Ye J, Xu S. Deep learning combined with radiomics for the classification of enlarged cervical lymph nodes. J Cancer Res Clin Oncol. 2022;148(10):2773–2780. https://doi.org/10.1007/s00432-022-04047-5.

11. Yang Y, Zheng B, Li Y, Li Y, Ma X. Computer-aided diagnostic models to classify lymph node metastasis and lymphoma involvement in enlarged cervical lymph nodes using PET/CT. Med Phys. 2023;50(1):152–162. https://doi.org/10.1002/mp.15901.

12. Wang T, Yan D, Liu Z, Xiao L, Liang C, Xin H et al. Diagnosis of cervical lymph node metastasis with thyroid carcinoma by deep learning application to CT images. Front Oncol. 2023;13:1099104. https://doi.org/10.3389/fonc.2023.1099104.

13. Li S, Wei X, Wang L, Zhang G, Jiang L, Zhou X, Huang Q. Dual-source dual-energy CT and deep learning for equivocal lymph nodes on CT images for thyroid cancer. Eur Radiol. 2024;34(12):7567–7579. https://doi.org/10.1007/s00330-024-10854-w.

14. Lee JH, Ha EJ, Kim D, Jung YJ, Heo S, Jang YH et al. Application of deep learning to the diagnosis of cervical lymph node metastasis from thyroid cancer with CT: external validation and clinical utility for resident training. Eur Radiol. 2020;30(6):3066–3072. https://doi.org/10.1007/s00330-019-06652-4.

15. Zhang D, Jiang F, Yin R, Wu GG, Wei Q, Cui XW et al. A Review of the Role of the S-Detect Computer-Aided Diagnostic Ultrasound System in the Evaluation of Benign and Malignant Breast and Thyroid Masses. Med Sci Monit: Int Med J Exp Clin Res. 2021;27:e931957. https://doi.org/10.12659/MSM.931957.

16. Zijtregtop EAM, Winterswijk LA, Beishuizen TPA, Zwaan CM, Nievelstein RAJ, Meyer-Wentrup FAG, Beishuizen A. Machine Learning Logistic Regression Model for Early Decision Making in Referral of Children with Cervical Lymphadenopathy Suspected of Lymphoma. Cancers. 2023;15(4):1178. https://doi.org/10.3390/cancers15041178.

17. Cai D, Wu S. Efficacy of logistic regression model based on multiparametric ultrasound in assessment of cervical lymphadenopathy – a retrospective study. Dentomaxillofac Radiol. 2022;51(2):20210308. https://doi.org/10.1259/dmfr.20210308.

18. Paddock M, Ruffle A, Beattie G, Prasai A, Jeanes A. Do otherwise well, healthy children with palpable cervical lymph nodes require investigation with neck ultrasound? Arch Dis Child. 2020;105(10):1012–1016. https://doi.org/10.1136/archdischild-2020-319648.

19. Burkhard-Meier A, Jurinovic V, Berclaz LM, Albertsmeier M, Dürr HR, Klein A et al. Differentiation of benign and metastatic lymph nodes in soft tissue sarcoma. Clin Exp Metastasis. 2024;41(2):131–141. https://doi.org/10.1007/s10585-024-10273-7.

20. Alamdaran SA, Randian A, Rasoulian B, Jafarian AH, Aminzadeh B, Niroumand S. Correlation of Sonographic Classification of Neck Adenopathy (A-RADS) and Malignancy. Iran J Otorhinolaryngol. 2023;35(126):39–47. https://doi.org/10.22038/IJORL.2022.67255.3299.

21. Spijkers S, Littooij AS, Nievelstein RAJ. Measurements of cervical lymph nodes in children on computed tomography. Pediatr Radiol. 2020;50(4):534–542. https://doi.org/10.1007/s00247-019-04595-y.

22. Krišto B, Buljan M. The lymph node roundness index in the evaluation of lymph nodes of the neck. Coll Antropol. 2015;39(1):165–169. https://pubmed.ncbi.nlm.nih.gov/26040085.

23. Steinkamp HJ, Cornehl M, Hosten N, Pegios W, Vogl T, Felix R. Cervical lymphadenopathy: ratio of longto short-axis diameter as a predictor of malignancy. Br J Radiol. 1995;68(807):266–270. https://doi.org/10.1259/0007-1285-68-807-266.

24. Ni X, Xu S, Zhan W, Zhou W. Ultrasonographic features of cervical lymph node metastases from medullary thyroid cancer: a retrospective study. BMC Med Imaging. 2022;22(1):151. https://doi.org/10.1186/s12880-022-00882-7.

25. Rohan K, Ramesh A, Sureshkumar S, Vijayakumar C, Abdulbasith KM, Krishnaraj B. Evaluation of B-Mode and Color Doppler Ultrasound in the Diagnosis of Malignant Cervical Lymphadenopathy. Cureus. 2020;12(8):e9819. https://doi.org/10.7759/cureus.9819.

26. Locke R, Comfort R, Kubba H. When does an enlarged cervical lymph node in a child need excision? A systematic review. Int J Pediatr Otorhinolaryngol. 2014;78(3):393–401. https://doi.org/10.1016/j.ijporl.2013.12.011.

27. Delantoni A, Sarafopoulos A. Sonographic Anatomy and Pathology: Cervical Lymph Nodes. In: Orhan K (ed.). Ultrasonography in Dentomaxillofacial Diagnostics. Springer International Publishing; 2021, pp. 77–87. https://doi.org/10.1007/978-3-030-62179-7_6.

28. Pandey A, Kureel SN, Pandey J, Wakhlu A, Rawat J, Singh TB. Chronic cervical lymphadenopathy in children: Role of ultrasonography. J Indian Assoc Pediatr Surg. 2012;17(2):58–62. https://doi.org/10.4103/0971-9261.93963.

29. Białek EJ, Jakubowski W. Mistakes in ultrasound diagnosis of superficial lymph nodes. J Ultrason. 2017;17(68):59–65. https://doi.org/10.15557/JoU.2017.0008.

30. Jia W, Cai Y, Wang S, Wang J. Predictive value of an ultrasound-based radiomics model for central lymph node metastasis of papillary thyroid carcinoma. Int J Med Sci. 2024;21(9):1701–1709. https://doi.org/10.7150/ijms.95022.

31. Cardesa-Salzmann TM, Colomo L, Gutierrez G, Chan WC, Weisenburger D, Climent F et al. High microvessel density determines a poor outcome in patients with diffuse large B-cell lymphoma treated with rituximab plus chemotherapy. Haematologica. 2011;96(7):996–1001. https://doi.org/10.3324/haematol.2010.037408.

32. Şen HS, Ocak S, Yılmazbaş P. Children with cervical lymphadenopathy: reactive or not? Turk J Pediatr. 2021;63(3):363–371. https://doi.org/10.24953/turkjped.2021.03.003.


Review

For citations:


Polev GA, Oganesyan RS, Yaremenko EY, Grachev NS. Predictors of Malignant Lymph Node Involvement in paediatric patients: Analysis of 217 Cases. Meditsinskiy sovet = Medical Council. 2024;(19):206-213. (In Russ.) https://doi.org/10.21518/ms2024-439

Views: 167


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)