Preview

Meditsinskiy sovet = Medical Council

Advanced search

Therapeutic strategy for overcoming antibiotic resistance in bacterial biofilms

https://doi.org/10.21518/ms2024-486

Abstract

The presented article discusses the issue of overcoming antibiotic resistance in modern conditions. The main focus is on the formation of biofilms by microorganisms as one of the key mechanisms of antibacterial resistance. One of the key problems with the use of antibiotics for the treatment of biofilms is the necessity to achieve the required minimum inhibitory concentration (MIC) of the drug at the biofilm site, which may be 100-800 times greater than the MIC for planktonic cells. Considering the significant human and financial costs, there is an increasing need to develop new strategies for therapeutic intervention in biofilms. The effectiveness of treatment is linked to the ability of the antimicrobial agent to penetrate the heterogeneous structure of the bacterial colony's substrate. It has been shown that the ability of the drug to penetrate the biofilm depends on the structure of the matrix, the genus and strain of the bacteria, as well as the selected antibiotic. Strategies for the penetration of major antibacterial drugs into the biofilm matrix are provided, in particular the use of combination drugs such as thiamphenicol glycinate acetylcysteinate (TGA). The possibilities of using TGA in various conditions — chronic bronchitis, chronic obstructive pulmonary disease, cystic fibrosis, and rhinosinusitis — are discussed. In addition, data are presented on the positive impact of N-acetylcysteine (NAC) on biofilms in various other locations, including gastroenterology and catheter-associated infections. A review of the available medical literature shows that NAC in combination with thiamphenicol possesses, in addition to antibacterial properties, the ability to influence biofilm formation and disrupt biofilm function. The use of NAC may be a new strategy for the treatment of chronic respiratory infections associated with colony-forming microorganisms.

About the Authors

G. L. Ignatova
South Ural State Medical University
Russian Federation

Galina L. Ignatova - Dr. Sci. (Med.), Professor, Head of the Department of Therapy at the Institute of Continuing Professional Education, Director of the Institute of Pulmonology, South Ural State Medical University.

64, Vorovskiy St., Chelyabinsk, 454092



V. N. Antonov
South Ural State Medical University
Russian Federation

Vladimir N. Antonov - Dr. Sci. (Med.), Professor of the Department of Therapy of the Institute of Continuing Professional Education, Chief Re-searcher of the Institute of Pulmonology, South Ural State Medical University.

64, Vorovskiy St., Chelyabinsk, 454092



References

1. Strathdee SA, Davies SC, Marcelin JR. Confronting antimicrobial resistance beyond the COVID-19 pandemic and the 2020 US election. Lancet. 2020;396(10257):1050-1053. https//doi.org/10.1016/S0140-6736(20)32063-8.

2. Jesudason T. A new One Health Joint Action Plan. Lancet Infect Dis. 2022;22(12):1673. https://doi.org/10.1016/S1473-3099(22)00751-4.

3. Adebisi YA, Ogunkola IO. The global antimicrobial resistance response effort must not exclude marginalised populations. Trop Med Health. 2023;51(1):33. https://doi.org/10.1186/s41182-023-00524-w

4. Rather MA, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol. 2021;52(4):1701-1718. https://doi.org/10.1007/s42770-021-00624-x.

5. Grooters KE, Ku JC, Richter DM, Krinock MJ, Minor A, Li P et al. Strategies for combating antibiotic resistance in bacterial biofilms. Front Cell Infect Microbiol. 2024;14:1352273. https://doi.org/10.3389/fcimb.2024.1352273/

6. Gominet M, Compain F, Beloin C, Lebeaux D. Central venous catheters and biofilms: where do we stand in 2017? APMIS. 2017;125(4):365-375. https://doi.org/10.1111/apm.12665.

7. Sharma D, Misba L, Khan AU. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control. 2019;8:76. https://doi.org/10.1186/s13756-019-0533-3.

8. Jacqueline C, Caillon J. Impact of bacterial biofilm on the treatment of prosthetic joint infections. J Antimicrob Chemother. 2014;69(Suppl. 1):i37-i40. https://doi.org/10.1093/jac/dku254.

9. Perry EK, Tan MW. Bacterial biofilms in the human body: prevalence and impacts on health and disease. Front Cell Infect Microbiol. 2023;13:1237164. https://doi.org/10.3389/fcimb.2023.1237164.

10. Toyofuku M, Inaba T, Kiyokawa T, Obana N, Yawata Y, Nomura N. Environmental factors that shape biofilm formation. Biosci Biotechnol Biochem. 2016;80(1):7-12. https://doi.org/10.1080/09168451.2015.1058701.

11. Singh R, Sahore S, Kaur P, Rani A, Ray P. Penetration barrier contributes to bacterial biofilm-associated resistance against only select antibiotics, and exhibits genus-, strain- and antibiotic-specific differences. Pathog Dis. 2016;74(6):ftw056. https://doi.org/10.1093/femspd/ftw056.

12. Panlilio H, Rice CV. The role of extracellular DNA in the formation, architecture, stability, and treatment of bacterial biofilms. Biotechnol Bioeng. 2021;118(6):2129-2141. https://doi.org/10.1002/bit.27760.

13. Liu J, Zhang J, Guo L, Zhao W, Hu X, Wei X. Inactivation of a putative efflux pump (LmrB) in Streptococcus mutans results in altered biofilm structure and increased exopolysaccharide synthesis: implications for biofilm resistance. Biofouling. 2017;33(6):481-493. https://doi.org/10.1080/08927014.2017.1323206.

14. Pinto RM, Soares FA, Reis S, Nunes C, Van Dijck P. Innovative Strategies Toward the Disassembly of the EPS Matrix in Bacterial Biofilms. Front Microbiol. 2020;11:952. https://doi.org/10.3389/fmicb.2020.00952.

15. Belfield K, Bayston R, Hajduk N, Levell G, Birchall JP, Daniel M. Evaluation of combinations of putative anti-biofilm agents and antibiotics to eradicate biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. J Antimicrob Chemother. 2017;72(9):2531-2538. https://doi.org/10.1093/jac/dkx192.

16. Bernal-Mercado AT, Gutierrez-Pacheco MM, Encinas-Basurto D, Mata-Haro V, Lopez-Zavala AA, Islas-Osuna MA et al. Synergistic mode of action of catechin, vanillic and protocatechuic acids to inhibit the adhesion of uropathogenic Escherichia coli on silicone surfaces. J Appl Microbiol. 2020;128(2):387-400. https://doi.org/10.1111/jam.14472.

17. Macchi A, Ardito F, Marchese A, Schito GC, Fadda G. Efficacy of N-acetyl-cysteine in combination with thiamphenicol in sequential (intramuscular/ aerosol) therapy of upper respiratory tract infections even when sustained by bacterial biofilms. J Chemother. 2006;18(5):507-513. https://doi.org/10.1179/joc.2006.18.5.507.

18. Mayaud C, Lentschner C. Bouchoucha S, Marsac J. L'acetylcysteinate de thiamphenicol glycinate dans le traitement des infections respiratoires aiguёs avec mucostase [Thiamphenicol glycinate acetylcysteinate in the treatment of acute respiratory infections with mucostasis]. Eur J Respir Dis Suppl. 1980;111:70-73. Available at: https://pubmed.ncbi.nlm.nih.gov/6938412.

19. Drago L, Fassina MC, Mombelli B, De Vecchi E, Lombardi A, Gismondo MR. Comparative effect of thiamphenicol glycinate, thiamphenicol glycinate N-acetylcysteinate, amoxicillin plus clavulanic acid, ceftriaxone and clarithromycin on pulmonary clearance of Haemophilus influenzae in an animal model. Chemotherapy. 2000;46(4):275-281. https://doi.org/10.1159/000007299.

20. Kozlov RS, Avdeev SN, Garashchenko TI, Geppe NA, Dronov IA, Zaytsev AA et al. Official statements of the board of experts on the use of topical thiamphenicol in patients with communityacquired respiratory infections. Klinicheskaia Mikrobiologiia i Antimikrobnaia Khimioterapiia. 2021;23(2):195-196. (In Russ.) Available at: https://cmac-journal.ru/publication/2021/2/cmac-2021-t23-n2-p195/cmac-2021-t23-n2-p195.pdf.

21. Bogomilskiy MR, Radtsig EYu, Pivneva ND, Kuyanova VE. Effectiveness of thiamphenicol glycinate acetilcysteinate in inhalation treatment of children with rhinosinusitis. Russian Bulletin of Perinatology and Pediatrics. 2021;66(1):73-79. (In Russ.) https://doi.org/10.21508/1027-4065-2021-66-1-73-79

22. Chikina SY. A role of thiamphenicol glycinate acetylcysteinate for therapy of respiratory diseases (a review). Meditsinskiy Sovet. 2020;(17):109-112. (In Russ.) https://doi.org/10.21518/2079-701X-2020-17-109-112.

23. Goswami M, Jawali N. N-acetylcysteine-mediated modulation of bacterial antibiotic susceptibility. Antimicrob Agents Chemother. 2010;54(8):3529-3530. https://doi.org/10.1128/aac.00710-10.

24. Zhao T, Liu Y. N-acetylcysteine inhibit biofilms produced by Pseudomonas aeruginosa. BMC Microbiol. 2010;10:140. https://doi.org/10.1186/1471-2180-10-140.

25. Karpova EV, Kolchanova NE, Petrovskaya TA, Tapalskiy DV. Microbiological activity of thiamphenicol and thiamphenicol glycinate acetylcysteinate against clinically significant microorganisms and their biofilms. Klinicheskaia Mikrobiologiia i Antimikrobnaia Khimioterapiia. 2024;26(1):31-39. (In Russ.) https://doi.org/10.36488/cmac.2024.1.31-39.

26. Papi A, Alfano F, Bigoni T, Mancini L, Mawass A, Baraldi F et al. N-acetylcysteine Treatment in Chronic Obstructive Pulmonary Disease (COPD) and Chronic Bronchitis/Pre-COPD: Distinct Meta-analyses. Arch Bronconeumol. 2024;60(5):269-278. https://doi.org/10.1016/j.arbres.2024.03.010.

27. Aiyer A, Manoharan A, Paino D, Farrell J, Whiteley GS, Kriel FH et al. Disruption of biofilms and killing of Burkholderia cenocepacia from cystic fibrosis lung using an antioxidant-antibiotic combination therapy. Int J Antimicrob Agents. 2021;58(2):106372. https://doi.org/10.1016/j.ijantimicag.2021.106372.

28. Lawson D, Saggers BA. N.A.C. And Antibiotics In Cystic Fibrosis. Br Med J. 1965;1(5430):317. https://doi.org/10.1136/bmj.1.5430.317.

29. Cammarota G, Branca G, Ardito F, Sanguinetti M, Ianiro G, Cianci R et al. Biofilm demolition and antibiotic treatment to eradicate resistant Helicobacter pylori: a clinical trial. Clin Gastroenterol Hepatol. 2010;8(9):817-820.e3. https://doi.org/10.1016/j.cgh.2010.05.006.

30. Mansouri MD, Hull RA, Stager CE, Cadle RM, Darouiche RO. In vitro activity and durability of a combination of an antibiofilm and an antibiotic against vascular catheter colonization. Antimicrob Agents Chemother. 2013;57(1):621-625. https://doi.org/10.1128/AAC.01646-12.


Review

For citations:


Ignatova GL, Antonov VN. Therapeutic strategy for overcoming antibiotic resistance in bacterial biofilms. Meditsinskiy sovet = Medical Council. 2024;(20):176-182. (In Russ.) https://doi.org/10.21518/ms2024-486

Views: 133


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)