Effectiveness of control of edema in patients with obesity and lymphedema after mastectomy using bioimpedancemetry
https://doi.org/10.21518/ms2024-526
Abstract
Introduction. Control of edema in obese patients with postmastectomy lymphedema is an important aspect of care for patients undergoing curative treatment for breast cancer. One effective and highly sensitive method for monitoring edema is bioimpedance measurement, which can be a useful tool for assessing tissue and fluid balance in such patients.
Aim. To study the feasibility of using bioimpedance analysis as a method to assess the efficacy of the anti-edema effects of physiotherapeutic treatment methods in patients with secondary lymphedema after mastectomy.
Materials and methods. In this review, a search for sources describing the effectiveness of the bioimpedanceometry method for controlling edema in patients with secondary lymphedema after mastectomy for breast cancer was carried out in several English text databases: PubMed, Scopus, Web of Science, Springer Link, and in the scientific electronic library elibrary.ru.
Results. After mastectomy, approximately 18% of patients undergoing radical treatment for breast cancer experience secondary lymphedema due to impaired lymphatic drainage of the upper extremity on the affected side as a result of lymph node removal. The development of lymphedema of the upper limb is accompanied by a significant decrease in the quality of life of patients and requires constant medical monitoring. Bioimpedansometry allows you to estimate the volume of fluid in the body and determine the presence of edema based on changes in the electrical resistance of tissues. In obese patients with lymphedema following mastectomy, this method may be particularly useful for early detection of subclinical limb lymphedema and evaluation of treatment effectiveness.
Conclusions. Thus, the use of bioimpedance measurements in the practice of oncologists and rehabilitation specialists can significantly facilitate the control of edema in patients with obesity and lymphedema after mastectomy. This method provides objective data on the state of fluid balance and allows the detection of edema in the early stages, which facilitates the earlier start of intensive non-pharmacological interventions to increase the effectiveness of postoperative rehabilitation and improve the quality of life of patients.
About the Authors
T. V. KonchugovaRussian Federation
Tatiana V. Konchugova - Dr. Sci. (Med.), Professor, Chief Researcher of the Department of Physiotherapy and Reflexology, Head of the Department of Rehabilitation Medicine, Physical Therapy and Medical Rehabilitation.
32, Novy Arbat St., Moscow, 121099
T. V. Apkhanova
Russian Federation
Tatiana V. Apkhanova - Dr. Sci. (Med.), Chief Researcher of the Department of Physiotherapy and Reflexotherapy.
32, Novy Arbat St., Moscow, 121099
V. A. Vasileva
Russian Federation
Valeriia A. Vasileva - Cand. Sci. (Med.), Senior Researcher, Somatic Rehabilitation, Active Longevity and Reproductive Health Department.
32, Novy Arbat St., Moscow, 121099
L. A. Marchenkova
Russian Federation
Larisa A. Marchenkova - Dr. Sci. (Med.), Head of Research Department, Head of Somatic Leading Researcher Rehabilitation, Active Longevity and Reproductive Health Department.
32, Novy Arbat St., Moscow, 121099
D. B. Kulchitskaya
Russian Federation
Detelina B. Kulchitskaya - Dr. Sci. (Med.), Professor, Chief Researcher, Department of Rhysiotherapy and Reflexology.
32, Novy Arbat St., Moscow, 121099
T. V. Marfina
Russian Federation
Tatiana V. Marfina - Rresearcher of the Department of Physiotherapy and Reflexotherapy..
32, Novy Arbat St., Moscow, 121099
A. A. Mukhina
Russian Federation
Anastasiya A. Mukhina - Leading Researcher of the Department of Physiotherapy and Reflexotherapy.
32, Novy Arbat St., Moscow, 121099
References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–249. https://doi.org/10.3322/caac.21660.
2. Rupp J, Hadamitzky C, Henkenberens C, Christiansen H, Steinmann D, Bruns F. Frequency and risk factors for arm lymphedema after multimodal breast-conserving treatment of nodal positive breast Cancer – a long-term observation. Radiat Oncol. 2019;14(1):39. https://doi.org/10.1186/s13014-019-1243-y.
3. Ridner SH, Bonner CM, Deng J, Sinclair VG. Voices from the shadows: living with lymphedema. Cancer Nurs. 2012;35(1):E18–E26. https://doi.org/10.1097/ncc.0b013e31821404c0.
4. Fu MR, Kang Y. Psychosocial impact of living with cancer-related lymphedema. Semin Oncol Nurs. 2013;29(1):50–60. https://doi.org/10.1016/j.soncn.2012.11.007.
5. Jones LW, Eves ND, Haykowsky M, Freedland SJ, Mackey JR. Exercise intolerance in cancer and the role of exercise therapy to reverse dysfunction. Lancet Oncology. 2009;10(6):598–605. https://doi.org/10.1016/S1470-2045(09)70031-2.
6. Pillon NJ, Loos RJF, Marshall SM, Zierath JR. Metabolic consequences of obesity and type 2 diabetes: Balancing genes and environment for personalized care. Cell. 2021;184(6):1530–1544. https://doi.org/10.1016/j.cell.2021.02.012.
7. Divella R, De Luca R, Abbate I, Naglieri E, Daniele A. Obesity and cancer: the role of adipose tissue and adipo-cytokines-induced chronic inflammation. J Cancer. 2016;7(15):2346–2359. https://doi.org/10.7150/jca.16884.
8. Gerasimchik OA, Girsh YaV. Compositional composition of the body in obese children and adolescents. Translational Medicine. 2019;6(1):51–57. (In Russ.) Available at: https://www.elibrary.ru/xfaoos.
9. Ter SE, Alavi A, Kim CK, Merli G. Lymphoscintigraphy. A reliable test for the diagnosis of lymphedema. Clin Nucl Med. 1993;18(8):646–654. https://doi.org/10.1097/00003072-199308000-00003.
10. Dehesh T, Fadaghi S, Seyedi M, Abolhadi E, Ilaghi M, Shams P et al. The relation between obesity and breast cancer risk in women by considering menstruation status and geographical variations: a systematic review and meta-analysis. BMC Womens Health. 2023;23(1):392. https://doi.org/10.1186/s12905-023-02543-5.
11. Balanova YuA, Shalnova SA, Deev AD, Imaeva AE, Kontsevaya AV, Muromtseva GA et al. Obesity in Russian population – prevalence and association with the non-communicable diseases risk factors. Russian Journal of Cardiology. 2018;(6):123–130. (In Russ.) https://doi.org/10.15829/1560-4071-2018-6-123-130.
12. Wu R, Huang X, Dong X, Zhang H, Zhuang L. Obese patients have higher risk of breast cancer-related lymphedema than overweight patients after breast cancer: a meta-analysis. Ann Transl Med. 2019;7(8):172. https://doi.org/10.21037/atm.2019.03.44.
13. Zhu YQ, Xie YH, Liu FH, Guo Q, Shen PP, Tian Y. Systemic analysis on risk factors for breast cancer related lymphedema. Asian Pac J Cancer Prev. 2014;15(16):6535–6541. https://doi.org/10.7314/apjcp.2014.15.16.6535.
14. DiSipio T, Rye S, Newman B, Hayes S. Incidence of unilateral arm lymphoedema after breast cancer: a systematic review and meta-analysis. Lancet Oncol. 2013;14(6):500–515. https://doi.org/10.1016/s1470-2045(13)70076-7.
15. Mak SS, Yeo W, Lee YM, Mo KF, Tse KY, Tse SM et al. Predictors of lymphedema in patients with breast cancer undergoing axillary lymph node dissection in Hong Kong. Nurs Res. 2008;57(6):416–425. https://doi.org/10.1097/nnr.0b013e31818c3de2.
16. Gillespie TC, Sayegh HE, Brunelle CL, Daniell KM, Taghian AG. Breast cancer-related lymphedema: risk factors, precautionary measures, and treatments. Gland Surg. 2018;7(4):379–403. https://doi.org/10.21037/gs.2017.11.04.
17. Greene AK, Maclellan RA. Obesity-induced Upper Extremity Lymphedema. Plast Reconstr Surg Glob Open. 2013;1(7):e59. https://doi.org/10.1097/gox.0b013e3182a96359.
18. Arngrim N, Simonsen L, Holst JJ, Bülow J. Reduced adipose tissue lymphatic drainage of macromolecules in obese subjects: a possible link between obesity and local tissue inflammation? Int J Obes. 2013;37(5):748–750. https://doi.org/10.1038/ijo.2012.98.
19. Duyur Cakit B, Pervane Vural S, Ayhan FF. Complex Decongestive Therapy in Breast Cancer-Related Lymphedema: Does Obesity Affect the Outcome Negatively? Lymphat Res Biol. 2019;17(1):45–50. https://doi.org/10.1089/lrb.2017.0086.
20. Kalashnikova VA, Novikova VP, Smirnova NN, Volkova IS. Life quality in adolescents with obesity and concomitant diseases. Preventive and Clinical Medicine. 2018;66(1):38–43. (In Russ.) Available at: https://www.elibrary.ru/yuzikd.
21. Weissleder H, Weissleder R. Lymphedema: evaluation of qualitative and quantitative lymphoscintigraphy in 238 patients. Radiology. 1988;167(3):729–735. https://doi.org/10.1148/radiology.167.3.3363131.
22. Martynova IN, Vinyarskaya IV, Terleckaya RN. Alteration in quality of life in obese children (review of the literature). Russian Pediatric Journal. 2018;21(5):285–289. (In Russ.) Available at: https://elibrary.ru/yubudj.
23. Tsiros MD, Olds T, Buckley JD, Grimshaw P, Brennan L, Walkley J et al. Healthrelated quality of life in obese children and adolescents. Int J Obes. 2009;33(4):387–400. https://doi.org/10.1038/ijo.2009.42.
24. Garusi C, Lohsiriwat V, Brenelli F, Galimberti VE, De Lorenzi F, Rietjens M et al. The value of latissimus dorsi flap with implant reconstruction for total mastectomy after conservative breast cancer surgery recurrence. Breast. 2011;20(2):141–144. https://doi.org/10.1016/j.breast.2010.10.007.
25. Chang DW, Barnea Y, Robb GL. Effects of an autologous flap combined with an implant for breast reconstruction: an evaluation of 1000 consecutive reconstructions of previously irradiated breasts. Plast Reconstr Surg. 2008;122(2):356–362. https://doi.org/10.1097/prs.0b013e31817d6303.
26. Kronowitz SJ, Robb GL. Breast reconstruction with postmastectomy radiation therapy: current issues. Plast Reconstr Surg. 2004;114(4):950–960. https://doi.org/10.1097/01.prs.0000133200.99826.7f.
27. Spear SL, Boehmler JH, Taylor NS, Prada C. The role of the latissimus dorsi flap in reconstruction of the irradiated breast. Plast Reconstr Surg. 2007;119(1):1–9. https://doi.org/10.1097/01.prs.0000244756.45925.7f.
28. Munhoz AM, Aldrighi C, Montag E, Arruda EG, Aldrighi JM, Filassi JR et al. Periareolar skin-sparing mastectomy and latissimus dorsi flap with biodimensional expander implant reconstruction: surgical planning, outcome, and complications. Plast Reconstr Surg. 2007;119(6):1637–1649. https://doi.org/10.1097/01.prs.0000246406.68739.e4.
29. Tomayeva KG, Gaydukov SN. A model for predicting the risk of preeclampsia in women with different somatotypes. Journal of Obstetrics and Women’s Diseases. 2019;68(6):65–72. (In Russ.) https://doi.org/10.17816/JOWD68665-72.
30. Jeong SM, Lee DH, Giovannucci EL. Predicted lean body mass, fat mass and risk of lung cancer: prospective US cohort study. Eur J Epidemiol. 2019;34(12):1151–1160. https://doi.org/10.1007/s10654-019-00587-2.
31. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371(9612):569–578. https://doi.org/10.1016/s0140-6736(08)60269-x.
32. Britton KA, Massaro JM, Murabito JM, Kreger BE, Hoffmann U, Fox CS. Body fat distribution, incident cardiovascular disease, cancer, and all-cause mortality. J Am Coll Cardiol. 2013;62(10):921–925. https://doi.org/10.1016/j.jacc.2013.06.027.
33. Jansen AK, Gattermann T, da Silva Fink J, Saldanha MF, Dias Nascimento Rocha C, de Souza Moreira TH, Silva FM. Low standardized phase angle predicts prolonged hospitalization in critically ill patients. Clin Nutr ESPEN. 2019;34:68–72. https://doi.org/10.1016/j.clnesp.2019.08.011.
34. Li HB, Cheng H, Hou DQ, Gao AY, Zhu ZX, Yu ZC et al. Value of body fat mass measured by bioelectrical impedance analysis in predicting abnormal blood pressure and abnormal glucose metabolism in children. Zhongguo Dang Dai Er Ke Za Zhi. 2020;22(1):17–23. https://doi.org/10.7499/j.issn.1008-8830.2020.01.005.
35. Matusik E, Augustak A, Durmala J. Functional Mobility and Basic Motor Skills in Patients with Multiple Sclerosis and Its Relation to the Anthropometrical Status and Body Composition Parameters. Medicina. 2019;55(12):773. https://doi.org/10.3390/medicina55120773.
36. Wang WL, Liang S, Zhu FL, Liu JQ, Chen XM, Cai GY. Association of the malnutrition-inflammation score with anthropometry and body composition measurements in patients with chronic kidney disease. Ann Palliat Med. 2019;8(5):596–603. https://doi.org/10.21037/apm.2019.10.12.
37. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.
38. Kaulesar Sukul DM, den Hoed PT, Johannes EJ, van Dolder R, Benda E. Direct and indirect methods for the quantification of leg volume: comparison between water displacement volumetry, the disk model method and the frustum sign model method, using the correlation coefficient and the limits of agreement. J Biomed Eng. 1993;15(6):477–480. https://doi.org/10.1016/0141-5425(93)90062-4.
39. Ward LC, Bunce IH, Cornish BH, Mirolo BR, Thomas BJ, Jones LC. Multifrequency bioelectrical impedance augments the diagnosis and management of lymphoedema in post-mastectomy patients. Eur J Clin Invest. 1992;22(11):751–754. https://doi.org/10.1111/j.1365-2362.1992.tb01440.x.
40. Stout NL, Binkley JM, Schmitz KH. A prospective surveillance model for rehabilitation for women with breast cancer. Cancer. 2012;118(S8):2191–2200. https://doi.org/10.1002/cncr.27476.
41. Soran A, Ozmen T, McGuire KP, Diego EJ, McAuliffe PF, Bonaventura M et al. The importance of detection of subclinical lymphedema for the prevention of breast cancer-related clinical lymphedema after axillary lymph node dissection; a prospective observational study. Lymphat Res Biol. 2014;12(4):289–294. https://doi.org/10.1089/lrb.2014.0035.
42. Yang EJ, Ahn S, Kim EK, Kang E, Park Y, Lim JY, Kim SW. Use of a prospective surveillance model to prevent breast cancer treatment-related lymphedema: a single-center experience. Breast Cancer Res Treat. 2016;160(2):269–276. https://doi.org/10.1007/s10549-016-3993-7.
43. Whitworth PW, Cooper A. Reducing chronic breast cancer-related lymphedema utilizing a program of prospective surveillance with bioimpedance spectroscopy. Breast J. 2018;24(1):62–65. https://doi.org/10.1111/tbj.12939.
44. Kilgore LJ, Korentager SS, Hangge AN, Amin AL, Balanoff CR, Larson KE et al. Reducing Breast Cancer-Related Lymphedema (BCRL) Through Prospective Surveillance Monitoring Using Bioimpedance Spectroscopy (BIS) and Patient Directed Self-Interventions. Ann Surg Oncol. 2018;25(10):2948–2952. https://doi.org/10.1245/s10434-018-6601-8.
Review
For citations:
Konchugova TV, Apkhanova TV, Vasileva VA, Marchenkova LA, Kulchitskaya DB, Marfina TV, Mukhina AA. Effectiveness of control of edema in patients with obesity and lymphedema after mastectomy using bioimpedancemetry. Meditsinskiy sovet = Medical Council. 2024;(23):237-243. (In Russ.) https://doi.org/10.21518/ms2024-526