Clinical and metabolic aspects of protein-energy malnutrition in patients in pediatric intensive care units
https://doi.org/10.21518/ms2025-047
Abstract
Inadequate quantitative and/or component nutrition of children remains an urgent problem worldwide. The General Assembly of the United Nations formulated the “Global Monitoring Framework for Nutrition”, as a result of which the level of acute nutritional deficiencies in the general child population should be reduced to 5% by 2025. A systematic analysis was conducted on the basis of scientific publications in the electronic databases PubMed, EMBASE, Cochrane Library, eLibrary.ru. The data obtained showed that in developed economies protein-energy deficiency is registered in 2.4–26% of patients admitted to medical inpatient facilities. Nutritional deficiency in pediatric patients is polyetiological and can influence the outcome of the disease. Critical conditions (trauma, severe infectious diseases and their complications, destructive pancreatitis, etc.) contribute a significant part to the etiologic structure of protein-energy deficiency in patients. Understanding the pathogenesis of protein-energy deficiency in patients in critical condition allows to optimally approach the organization and provision of care and, in particular, nutritional support. Analysis of the results of studies has shown that malnutrition in children in critical conditions causes a violation of all types of metabolism: carbohydrate, protein, fat, and vitamin metabolism. On the background of hypermetabolism there are changes in hormonal and immunologic status, shifts in water-electrolyte balance. A wide range of specialized products is presented for organizing both tube and oral nutrition in children who need nutritional support.
About the Authors
I. A. LisitsaRussian Federation
Ivan A. Lisitsa - Assistant at the Department of General Medical Practice.
2, Litovskaya St., St Petersburg, 194100
V. L. Gritsinskaya
Russian Federation
Vera L. Gritsinskaya - Dr. Sci. (Med.), Professor of the Department of General Medical Practice, Leading Researcher of the Laboratory of Medical and Social Problems in Pediatrics.
2, Litovskaya St., St Petersburg, 194100
A. N. Zavyalova
Russian Federation
Anna N. Zavyalova - Dr. Sci. (Med.), Professor Head of the Department of Introduction to Paediatric Diseases with the Course of Baby Carehttps.
2, Litovskaya St., St Petersburg, 194100
Yu. S. Aleksandrovich
Russian Federation
Yurii S. Aleksandrovich - Dr. Sci. (Med.), Head of the Department of Anesthesiology, Intensive Care and Emergency Pediatrics of the Faculty of Postgraduate and Additional Professional Education.
2, Litovskaya St., St Petersburg, 194100
O. V. Lisovskii
Russian Federation
Oleg V. Lisovskii - Cand. Sci. (Med.), Head of the Department of General Medical Practice.
2, Litovskaya St., St Petersburg, 194100
References
1. Zakharova IN, Dmitrieva YuA, Sugyan NG, Simakova MA. Malnutrition in pediatric practice: differential diagnosis and possibilities for nutritional support. Meditsinskiy Sovet. 2019;(2):200–208. (In Russ.) https://doi.org/10.21518/2079-701X-2019-2-200-208.
2. Mehta NM, Corkins MR, Lyman B, Malone A, Goday PS, Carney LN et al.; American Society for Parenteral and Enteral Nutrition Board of Directors. Defining pediatric malnutrition: a paradigm shift toward etiology-related definitions. JPEN J Parenter Enteral Nutr. 2013;37(4):460–481. https://doi.org/10.1177/0148607113479972.
3. Тутельян ВА, Конь ИЯ (ред.). Детское питание. 4-е изд., перераб. и доп. М.: МИА; 2017. С. 452–465.
4. Leyderman IN, Gritsan AI, Zabolotskikh IB. Perioperative nutritional support. Clinical practice recommendations of the national “Federation of Anesthesiologists and Reanimatologists”. Annals of Critical Care. 2021;(4):7–20. (In Russ.) https://doi.org/10.21320/1818-474X-2021-4-7-20.
5. Borovik TE, Fomina МV, Yatsyk SP, Zvonkova NG, Bushueva TV, Roslavtseva EA et al. Assessment of nutritional status and risks of the development of malnutrition in children in the surgical hospital. Pediatriya – Zhurnal im G.N. Speranskogo. 2022;101(2):103–112. (In Russ.) https://doi.org/10.24110/0031-403X-2022-101-2-103-112.
6. Gritsinskaya VL, Novikova VP. On the epidemiology of underweight in children and adolescents (systematic review and meta-analysis of scientifi c publications). Experimental and Clinical Gastroenterology. 2023;215(7):125–135. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-215-7-125-135.
7. McCarthy A, Delvin E, Marcil V. Prevalence of Malnutrition in Pediatric Hospitals in Developed and InTransition Countries: The Impact of Hospital Practices. Nutrients. 2019;11(2):236. https://doi.org/10.3390/nu11020236.
8. Khlevner J, Naranjo K, Hoyer C. Healthcare Burden Associated with Malnutrition Diagnoses in Hospitalized Children with Critical Illnesses. Nutrients. 2023;15(13):3011. https://doi.org/10.3390/nu15133011.
9. Dipasquale V, Cucinotta U, Romano C. Acute Malnutrition in Children: Pathophysiology, Clinical Effects and Treatment. Nutrients. 2020;12(8):2413. https://doi.org/10.3390/nu12082413.
10. Wernerman J, Christopher KB, Annane D, Casaer MP, Coopersmith CM, Deane AM, et al. Metabolic support in the critically ill: a consensus of 19. Crit Care. 2019;23(1):318. https://doi.org/10.1186/s13054-019-2597-0.
11. de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85(9):660–667. https://doi.org/10.2471/blt.07.043497.
12. Zvonkova NG, Borovik TE, Maslova NA, Fomina MV. Potential of using mid-upper arm circumference as pediatric screening tool for malnutrition. Pediatric Nutrition. 2021;19(6):68–74. (In Russ.) Available at: https://www.phdynasty.ru/katalog/zhurnaly/voprosy-detskoy-dietologii/2021/tom-19-nomer-6/43113.
13. Abdel-Rahman SM, Bi C, Thaete K. Construction of Lambda, Mu, Sigma Values for Determining Mid-Upper Arm Circumference z Scores in U.S. Children Aged 2 Months Through 18 Years. Nutr Clin Pract. 2017;32(1):68–76. https://doi.org/10.1177/0884533616676597.
14. Tume LN, Valla FV, Joosten K. Nutritional support for children during critical illness: European Society of Pediatric and Neonatal Intensive Care (ESPNIC) metabolism, endocrine and nutrition section position statement and clinical recommendations. Intensive Care Med. 2020;46(3):411–425. https://doi.org/10.1007/s00134-019-05922-5.
15. Carter LE, Shoyele G, Southon S. Screening for Pediatric Malnutrition at Hospital Admission: Which Screening Tool Is Best? Nutr Clin Pract. 2020;35(5):951–958. https://doi.org/10.1002/ncp.10367.
16. Aleksandrovich YuS, Aleksandrovich IV, Pshenisnov KV. Screening methods for assessing nutritional risk in hospitalized children. Annals of Critical Care. 2015;(3):24–30. (In Russ.) Available at: https://www.elibrary.ru/vjiugz.
17. Zvonkova NG, Borovik TE, Chernikov VV, Gemdzhian EG, Yatsyk SP, Fisenko AP et al. Adaptation and validation of the STRONGkids nutritional risk screening tool for the Russian language speaking audience. Pediatriya – Zhurnal im G.N. Speranskogo. 2022;101(4):157–165. (In Russ.) https://doi.org/10.24110/0031-403X-2022-101-4-155-164.
18. Yakovleva MN, Smirnova KI, Lisitsa IA, Meshkov AV, Novikova IS. Laboratory markers of protein and energy insuffi ciency. Literature review. University Therapeutic Journal. 2024;6(1):79–89. (In Russ.) https://doi.org/10.56871/UTJ.2024.38.70.007.
19. Zavyalova AN, Novikova VP, Yakovleva MN. Sarcopenia in children: lecture. Meditsinskiy Sovet. 2023;18(1):245–253. (In Russ.) https://doi.org/10.21518/ms2023-470.
20. Kiseleva EV, Pigarova EA, Mokrysheva NG. The evolution of body composition assessment: from body mass index to body composition profiling. FOCUS Endocrinology. 2023;4(2):12–18. (In Russ.) https://doi.org/10.15829/1560-4071-2023-13.
21. Mehta NM, Duggan CP. Nutritional deficiencies during critical illness. Pediatr Clin North Am. 2009;56(5):1143–1160. https://doi.org/10.1016/j.pcl.2009.06.007.
22. Kyle UG, Akcan-Arikan A, Orellana RA, Coss-Bu JA. Nutrition support among critically ill children with AKI. Clin J Am Soc Nephrol. 2013;8(4):568–574. https://doi.org/10.2215/CJN.05790612.
23. Selivanova AV. The hormone metabolic alterations in patients in critical state. Klinichescheskaya Laboratornaya Diagnostika. 2012;(11):13–17. (In Russ.) Available at: https://cyberleninka.ru/article/n/gormonalno-metabolicheskie-izmeneniya-u-bolnyh-nahodyaschihsya-v-kriticheskom-sostoyanii.
24. Lisitsa IA, Aleksandrovich YuS, Zavyalova AN, Lisovskii OV, Novikova VP. Features of refeeding syndrome in pediatric intensive care unit patients (literature review). Messenger of Anesthesiology and Resuscitation. 2024;21(5):97–107. (In Russ.) https://doi.org/10.24884/2078-5658-2024-21-5-97-107.
25. Rovda YuI, Minyajlova NN, Stroeva VP, Nikitina ED. Protein-energy malnutrition (PEM) in children (lecture). Mother and Baby in Kuzbass. 2021;(2):40–51. (In Russ.) Available at: https://mednauki.ru/index.php/MD/article/view/574.
26. Zakirova AM, Faizullina RA, Kadriev AG, Shayapova DT, Palmova LYu, Rashitova EL et al. Nutritional support for various conditions accompanied by protein-energy malnutrition in children. Meditsinskiy Sovet. 2023;17(1):96–109. (In Russ.) https://doi.org/10.21518/ms2022-019.
27. Grover Z, Ee LC. Protein energy malnutrition. Pediatr Clin North Am. 2009;56(5):1055–1068. https://doi.org/10.1016/j.pcl.2009.07.001.
28. Batool R, Butt MS, Sultan MT. Protein-energy malnutrition: A risk factor for various ailments. Crit Rev Food Sci Nutr. 2015;55:242–253. https://doi.org/10.1080/10408398.2011.651543.
29. Sturgeon JP, Njunge JM, Bourke CD, Gonzales GB, Robertson RC, BwakuraDangarembizi M et al. Inflammation: the driver of poor outcomes among children with severe acute malnutrition? Nutr Rev. 2023;81(12):1636–1652. https://doi.org/10.1093/nutrit/nuad030.
30. Zhang J, Luo W, Miao C, Zhong J. Hypercatabolism and Anti-catabolic Therapies in the Persistent Inflammation, Immunosuppression, and Catabolism Syndrome. Front Nutr. 2022;9:941097. https://doi.org/10.3389/fnut.2022.941097.
31. Delgado AF, Okay TS, Leone C, Nichols B, Del Negro GM, Vaz FA. Hospital malnutrition and inflammatory response in critically ill children and adolescents admitted to a tertiary intensive care unit. Clinics. 2008;63(3):357–362. https://doi.org/10.1590/s1807-59322008000300012.
32. Wen B, Njunge JM, Bourdon C, Gonzales GB, Gichuki BM, Lee D et al. Systemic inflammation and metabolic disturbances underlie inpatient mortality among ill children with severe malnutrition. Sci Adv. 2022;8(7):eabj6779. https://doi.org/10.1126/sciadv.abj6779.
33. Tuttle CSL, Thang LAN, Maier AB. Markers of inflammation and their association with muscle strength and mass: A systematic review and meta-analysis. Ageing Res Rev. 2020;64:101185. https://doi.org/10.1016/j.arr.2020.101185.
34. Pacheco-Navarro AE, Rogers AJ. The Metabolomics of Critical Illness. Handb Exp Pharmacol. 2023;277:367–384. https://doi.org/10.1007/164_2022_622.
35. Vainshtein A, Sandri M. Signaling Pathways That Control Muscle Mass. Int J Mol Sci. 2020;21(13):4759. https://doi.org/10.3390/ijms21134759.
36. Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 2020;21(4):183–203. https://doi.org/10.1038/s41580-019-0199-y.
37. Willett R, Martina JA, Zewe JP, Wills R, Hammond GRV, Puertollano R. TFEB regulates lysosomal positioning by modulating TMEM55B expression and JIP4 recruitment to lysosomes. Nat Commun. 2017;8(1):1580. https://doi.org/10.1038/s41467-017-01871-z.
38. Van den Berghe G. Dynamic neuroendocrine responses to critical illness. Front Neuroendocrinol. 2002;23(4):370–391. https://doi.org/10.1016/s00913022(02)00006-7.
39. Schakman O, Kalista S, Barbé C. Glucocorticoid-induced skeletal muscle atrophy. Int J Biochem Cell Biol. 2013;45(10):2163–2172. https://doi.org/10.1016/j.biocel.2013.05.036.
40. Van Wyngene L, Vandewalle J, Libert C. Reprogramming of basic metabolic pathways in microbial sepsis: therapeutic targets at last? EMBO Mol Med. 2018;10(8):e8712. https://doi.org/10.15252/emmm.201708712.
41. Karunaratne R, Sturgeon JP, Patel R. Predictors of inpatient mortality among children hospitalized for severe acute malnutrition: a systematic review and meta-analysis. Am J Clin Nutr. 2020;112(4):1069–1079. https://doi.org/10.1093/ajcn/nqaa182.
42. Briend A. Kwashiorkor – New evidence in the puzzle of oedema formation. EBioMedicine. 2022;80:104070. https://doi.org/10.1016/j.ebiom.2022.104070.
43. Knebusch N, Mansour M, Vazquez S. Macronutrient and Micronutrient Intake in Children with Lung Disease. Nutrients. 2023;15(19):4142. https://doi.org/10.3390/nu15194142.
44. Güngör Ş, Doğan A. Diaphragm thickness by ultrasound in pediatric patients with primary malnutrition. Eur J Pediatr. 2023;182(7):3347–3354. https://doi.org/10.1007/s00431-023-05024-x.
45. Ndlovu S, David-Govender C, Tinarwo P. Changing mortality amongst hospitalised children with Severe Acute Malnutrition in KwaZulu-Natal, South Africa, 2009–2018. BMC Nutr. 2022;8(1):63. https://doi.org/10.1186/s40795-022-00559-y.
46. Mogensen KM, Lasky-Su J, Rogers AJ, Baron RM, Fredenburgh LE, Rawn J et al. Metabolites Associated with malnutrition in the intensive care unit are also associated with 28-day mortality. JPEN J Parenter Enteral Nutr. 2017;41(2):188–197. https://doi.org/10.1177/0148607116656164.
47. Gonzales GB, Njunge JM, Gichuki BM. The role of albumin and the extracellular matrix on the pathophysiology of oedema formation in severe malnutrition. EBioMedicine. 2022;79:103991. https://doi.org/10.1016/j.ebiom.2022.103991.
48. Golden MH. Nutritional and other types of oedema, albumin, complex carbohydrates and the interstitium – a response to Malcolm Coulthard’s hypothesis: Oedema in kwashiorkor is caused by hypo-albuminaemia. Paediatr Int Child Health. 2015;35(2):90–109. https://doi.org/10.1179/2046905515Y.0000000010.
49. Thaxton GE, Melby PC, Manary MJ. New Insights into the Pathogenesis and Treatment of Malnutrition. Gastroenterol Clin North Am. 2018;47(4):813–827. https://doi.org/10.1016/j.gtc.2018.07.007.
50. Georgieff MK. Nutrition and the developing brain: Nutrient priorities and measurement. Am J Clin Nutr. 2007;85(2):614S-620S. https://doi.org/10.1093/ajcn/85.2.614S.
51. Shahrin L, Chisti MJ, Ahmed T. Primary and secondary malnutrition. World Rev Nutr Diet. 2015;113:139–146. https://doi.org/10.1159/000367880.
52. Walson JL, Berkley JA. The impact of malnutrition on childhood infections. Curr Opin Infect Dis. 2018;31(3):231–236. https://doi.org/10.1097/QCO.0000000000000448.
53. Casaer MP, Bellomo R. Micronutrient deficiency in critical illness: an invisible foe? Intensive Care Med. 2019;45(8):1136–1139. https://doi.org/10.1007/s00134-019-05678-y.
54. Dao DT, Anez-Bustillos L, Cho BS. Assessment of Micronutrient Status in Critically Ill Children: Challenges and Opportunities. Nutrients. 2017;9(11):1185. https://doi.org/10.3390/nu9111185.
55. Dos Reis Santos M, Leite HP, Luiz Pereira AM. Factors associated with not meeting the recommendations for micronutrient intake in critically ill children. Nutrition. 2016;32(11-12):1217–1222. https://doi.org/10.1016/j.nut.2016.03.019.
56. Thurnham DI, Northrop-Clewes CA. Inflammation and biomarkers of micronutrient status. Curr Opin Clin Nutr Metab Care. 2016;19(6):458–463. https://doi.org/10.1097/MCO.0000000000000323.
57. Grosso G, Bei R, Mistretta A. Effects of vitamin C on health: a review of evidence. Front Biosci. 2013;18(3):1017–1029. https://doi.org/10.2741/4160.
58. Conway FJ, Talwar D, McMillan DC. The relationship between acute changes in the systemic inflammatory response and plasma ascorbic acid, alphatocopherol and lipid peroxidation after elective hip arthroplasty. Clin Nutr. 2015;34(4):642–646. https://doi.org/10.1016/j.clnu.2014.07.004.
59. Madden K, Feldman HA, Chun RF. Critically Ill Children Have Low Vitamin D-Binding Protein, Influencing Bioavailability of Vitamin D. Ann Am Thorac Soc. 2015;12(11):1654–1661. https://doi.org/10.1513/AnnalsATS.201503-160OC.
60. McNally JD, Menon K, Chakraborty P. Canadian Critical Care Trials Group. The association of vitamin D status with pediatric critical illness. Pediatrics. 2012;130(3):429–436. https://doi.org/10.1542/peds.2011-3059.
61. Ebenezer K, Job V, Antonisamy B. Serum Vitamin D Status and Outcome among Critically Ill Children Admitted to the Pediatric Intensive Care Unit in South India. Indian J Pediatr. 2016;83(2):120–125. https://doi.org/10.1007/s12098-015-1833-0.
62. Ghashut RA, Talwar D, Kinsella J. The effect of the systemic inflammatory response on plasma vitamin 25 (OH) D concentrations adjusted for albumin. PLoS ONE. 2014;9(3):e92614. https://doi.org/10.1371/journal.pone.0092614.
63. Aziz F, Patil P. Role of prophylactic vitamin K in preventing antibiotic induced hypoprothrombinemia. Indian J Pediatr. 2015;82(4):363–367. https://doi.org/10.1007/s12098-014-1584-3.
64. Chapple LS, Plummer MP, Chapman MJ. Gut dysfunction in the ICU: diagnosis and management. Curr Opin Crit Care. 2021;27(2):141–146. https://doi.org/10.1097/MCC.0000000000000813.
65. Zavyalova AN, Novikova VP, Ignatova PD. Axis “microbiota – muscle”. Experimental and Clinical Gastroenterology. 2022;207(11):60–69. (In Russ.) https://doi.org/10.31146/1682-8658-ecg-207-11-60-69.
66. Lisitsa IA, Aleksandrovich YuS, Zavyalova AN, Lisovskii OV, Razumov SA. Dysphagia in pediatric intensive care unit patients (review). Messenger of Anesthesiology and Resuscitation. 2023;20(6):97–105. (In Russ.) https://doi.org/10.24884/2078-5658-2023-20-6-97-105.
67. den Besten G, Bleeker A, Gerding A. Short-Chain Fatty Acids Protect Against High-Fat Diet-Induced Obesity via a PPARγ-Dependent Switch From Lipogenesis to Fat Oxidation. Diabetes. 2015;64(7):2398–2408. https://doi.org/10.2337/db14-1213.
68. Schieber AM, Lee YM, Chang MW. Disease tolerance mediated by microbiome E. coli involves inflammasome and IGF-1 signaling. Science. 2015;350(6260):558–563. https://doi.org/10.1126/science.aac6468.
69. Morton K, Marino LV, Pappachan JV. Feeding difficulties in young paediatric intensive care survivors: A scoping review. Clin Nutr ESPEN. 2019;30:1–9. https://doi.org/10.1016/j.clnesp.2019.01.013.
70. Fuentes-Servín J, Avila-Nava A, González-Salazar LE. Resting Energy Expenditure Prediction Equations in the Pediatric Population: A Systematic Review. Front Pediatr. 2021;9:795364. https://doi.org/10.3389/fped.2021.795364.
Review
For citations:
Lisitsa IA, Gritsinskaya VL, Zavyalova AN, Aleksandrovich YS, Lisovskii OV. Clinical and metabolic aspects of protein-energy malnutrition in patients in pediatric intensive care units. Meditsinskiy sovet = Medical Council. 2025;(1):204-213. (In Russ.) https://doi.org/10.21518/ms2025-047