Preview

Meditsinskiy sovet = Medical Council

Advanced search

Etiological and pathogenetic characteristics of chronic atrophic gastritis

https://doi.org/10.21518/ms2025-148

Abstract

Nowadays, there is a steady increase in the prevalence of chronic atrophic gastritis (CAG). The CAG etiology is complex and associated with many factors, which can act synergistically. Despite significant advances in the understanding of CAG, no specific treatment strategies for this disease have been developed. It drives scientists around the world to attach special attention to studying its pathophysiology and developing effective approaches to diagnosis and treatment in terms of cancer prevention. Today active work is underway to find new diagnostic biomarkers for early detection of atrophy, including the use of proteomic and metabolomic analysis. Due to the complexities of the pathogenesis of atrophic changes of gastric mucosa and the difficulties in treating this disease, it is necessary to consider personalized approaches to the treatment of such patients. The main objectives of the CAG therapy are to relieve dyspeptic symptoms, if any, and to prevent the risks of developing gastric cancer. The latest consensus documents contain recommendations on lifestyle modification, timely diagnosis and subsequent eradication of H. pylori infection, as well as the use of cytoprotective drugs to reduce the mucosal damage progression in CAG. Rebamipide neutralizes lipid peroxidation, increases mucosal blood flow and accelerates epithelial barrier restitution, which allows to recommend this drug for the treatment of CAG. Rebamipide can potentially prevent CAG by improving the mucous membrane state in chronic gastritis of any etiology, for which reason the cyclic and continuous therapy with rebamipide is currently considered as an effective strategy for the treatment of CAG and the prevention of gastric cancer.

About the Authors

M. A. Ovsepian
The Russian University of Medicine (RusUniMed)
Russian Federation

Mariia A. Ovsepian, Teaching Assistant, Department of Internal Diseases Propedeutics and Gastroenterology

20, Bldg. 1, Delegatskaya St., Moscow, 127473



D. N. Andreev
The Russian University of Medicine (RusUniMed)
Russian Federation

Dmitry N. Andreev, Cand. Sci. (Med.), Associate Professor, Associate Professor of Department of Internal Diseases Propedeutics and Gastroenterology

20, Bldg. 1, Delegatskaya St., Moscow, 127473



A. A. Samsonov
The Russian University of Medicine (RusUniMed)
Russian Federation

Aleksey A. Samsonov, Dr. Sci. (Med.), Professor of Department of Internal Diseases Propedeutics and Gastroenterology

20, Bldg. 1, Delegatskaya St., Moscow, 127473



References

1. Абдулхаков РА, Абдулхаков СР, Алексеева ОП, Алексеенко СА, Андреев ДН, Барановский АЮ и др. Гастрит и дуоденит: клинические рекомендации. 2024. Режим доступа: https://cr.minzdrav.gov.ru/view-cr/708_2.

2. de Vries AC, van Grieken NC, Looman CW, Casparie MK, de Vries E, Meijer GA, Kuipers EJ. Gastric cancer risk in patients with premalignant gastric lesions: a nationwide cohort study in the Netherlands. Gastroenterology. 2008;134(4):945–952. https://doi.org/10.1053/j.gastro.2008.01.071.

3. Thrift AP, Wenker TN, El-Serag HB. Global burden of gastric cancer: epidemiological trends, risk factors, screening and prevention. Nat Rev Clin Oncol. 2023;20(5):338–349. https://doi.org/10.1038/s41571-023-00747-0.

4. Correa P. Human gastric carcinogenesis: a multistep and multifactorial process – First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res. 1992;52(24):6735–6740. Available at: https://pubmed.ncbi.nlm.nih.gov/1458460.

5. Pan KF, Li WQ, Zhang L, Liu WD, Ma JL, Zhang Y et al. Gastric cancer prevention by community eradication of Helicobacter pylori: a cluster-randomized controlled trial. Nat Med. 2024;30(11):3250–3260. https://doi.org/10.1038/s41591-024-03153-w.

6. Sharndama HC, Mba IE. Helicobacter pylori: an up-to-date overview on the virulence and pathogenesis mechanisms. Braz J Microbiol. 2022;53(1):33–50. https://doi.org/10.1007/s42770-021-00675-0.

7. Kurashima Y, Murata-Kamiya N, Kikuchi K, Higashi H, Azuma T, Kondo S, Hatakeyama M. Deregulation of beta-catenin signal by Helicobacter pylori CagA requires the CagA-multimerization sequence. Int J Cancer. 2008;122(4):823–831. https://doi.org/10.1002/ijc.23190.

8. Buti L, Spooner E, Van der Veen AG, Rappuoli R, Covacci A, Ploegh HL. Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host. Proc Natl Acad Sci U S A. 2011;108(22):9238–9243. https://doi.org/10.1073/pnas.1106200108.

9. Zamperone A, Cohen D, Stein M, Viard C, Müsch A. Inhibition of polarityregulating kinase PAR1b contributes to Helicobacter pylori inflicted DNA Double Strand Breaks in gastric cells. Cell Cycle. 2019;18(3):299–311. https://doi.org/10.1080/15384101.2018.1560121.

10. Foegeding NJ, Caston RR, McClain MS, Ohi MD, Cover TL. An Overview of Helicobacter pylori VacA Toxin Biology. Toxins. 2016;8(6):173. https://doi.org/10.3390/toxins8060173.

11. Zhang LY, Zhang J, Li D, Liu Y, Zhang DL, Liu CF et al. Bile reflux is an independent risk factor for precancerous gastric lesions and gastric cancer: An observational cross-sectional study. J Dig Dis. 2021;22(5):282–290. https://doi.org/10.1111/1751-2980.12986.

12. Dixon MF, Mapstone NP, Neville PM, Moayyedi P, Axon AT. Bile reflux gastritis and intestinal metaplasia at the cardia. Gut. 2002;51(3):351–355. https://doi.org/10.1136/gut.51.3.351.

13. Huang G, Wang S, Wang J, Tian L, Yu Y, Zuo X, Li Y. Bile reflux alters the profile of the gastric mucosa microbiota. Front Cell Infect Microbiol. 2022;12:940687. https://doi.org/10.3389/fcimb.2022.940687.

14. Kuhnle GG, Story GW, Reda T, Mani AR, Moore KP, Lunn JC, Bingham SA. Diet-induced endogenous formation of nitroso compounds in the GI tract. Free Radic Biol Med. 2007;43(7):1040–1047. https://doi.org/10.1016/j.freeradbiomed.2007.03.011.

15. Song P, Li X, Chen S, Gong Y, Zhao J, Jiao Y et al. YTHDF1 mediates N-methyl-N-nitrosourea-induced gastric carcinogenesis by controlling HSPH1 translation. Cell Prolif. 2024;57(7):e13619. https://doi.org/10.1111/cpr.13619.

16. Song JH, Kim YS, Heo NJ, Lim JH, Yang SY, Chung GE, Kim JS. High Salt Intake Is Associated with Atrophic Gastritis with Intestinal Metaplasia. Cancer Epidemiol Biomarkers Prev. 2017;26(7):1133–1138. https://doi.org/10.1158/1055-9965.EPI-16-1024.

17. Vences-Mejía A, Caballero-Ortega H, Dorado-González V, Gamboa-Domínguez A, Gómez-Ruiz C, Camacho-Carranza R, Espinosa-Aguirre JJ. Cytochrome P450 expression in rat gastric epithelium with intestinal metaplasia induced by high dietary NaCl levels. Environ Toxicol Pharmacol. 2005;20(1):57–64. https://doi.org/10.1016/j.etap.2004.10.010.

18. Toyoda T, Tsukamoto T, Hirano N, Mizoshita T, Kato S, Takasu S et al. Synergistic upregulation of inducible nitric oxide synthase and cyclooxygenase-2 in gastric mucosa of Mongolian gerbils by a high-salt diet and Helicobacter pylori infection. Histol Histopathol. 2008;23(5):593–599. https://doi.org/10.14670/HH-23.593.

19. Leung WK, Wu KC, Wong CY, Cheng AS, Ching AK, Chan AW et al. Transgenic cyclooxygenase-2 expression and high salt enhanced susceptibility to chemical-induced gastric cancer development in mice. Carcinogenesis. 2008;29(8):1648–1654. https://doi.org/10.1093/carcin/bgn156.

20. Ozeki K, Hada K, Wakiya Y. Factors Influencing the Degree of Gastric Atrophy in Helicobacter pylori Eradication Patients with Drinking Habits. Microorganisms. 2024;12(7):1398. https://doi.org/10.3390/microorganisms12071398.

21. Yu L, Li R, Liu W, Zhou Y, Li Y, Qin Y et al. Protective Effects of Wheat Peptides against Ethanol-Induced Gastric Mucosal Lesions in Rats: Vasodilation and Anti-Inflammation. Nutrients. 2020;12(8):2355. https://doi.org/10.3390/nu12082355.

22. Guo S, Gao Q, Jiao Q, Hao W, Gao X, Cao JM. Gastric mucosal damage in water immersion stress: mechanism and prevention with GHRP-6. World J Gastroenterol. 2012;18(24):3145–3155. https://doi.org/10.3748/wjg.v18.i24.3145.

23. Massironi S, Zilli A, Elvevi A, Invernizzi P. The changing face of chronic autoimmune atrophic gastritis: an updated comprehensive perspective. Autoimmun Rev. 2019;18(3):215–222. https://doi.org/10.1016/j.autrev.2018.08.011.

24. Cascetta G, Colombo G, Eremita G, Garcia JGN, Lenti MV, Di Sabatino A, Travelli C. Pro- and anti-inflammatory cytokines: the hidden keys to autoimmune gastritis therapy. Front Pharmacol. 2024;15:1450558. https://doi.org/10.3389/fphar.2024.1450558.

25. Kuang W, Xu J, Xu F, Huang W, Majid M, Shi H et al. Current study of pathogenetic mechanisms and therapeutics of chronic atrophic gastritis: a comprehensive review. Front Cell Dev Biol. 2024;12:1513426. https://doi.org/10.3389/fcell.2024.1513426.

26. Nephew KP, Huang TH. Epigenetic gene silencing in cancer initiation and progression. Cancer Lett. 2003;190(2):125–133. https://doi.org/10.1016/s0304-3835(02)00511-6.

27. Tahara T, Arisawa T. DNA methylation as a molecular biomarker in gastric cancer. Epigenomics. 2015;7(3):475–486. https://doi.org/10.2217/epi.15.4.

28. Choi JM, Kim SG. Effect of Helicobacter pylori eradication on epigenetic changes in gastric cancer-related genes. Korean J Helicobacter Up Gastrointest Res. 2021;21(4):256–266. https://doi.org/10.7704/kjhugr.2021.0042.

29. Chen Q, Kang J, Fu C. The independence of and associations among apoptosis, autophagy, and necrosis. Signal Transduct Target Ther. 2018;3:18. https://doi.org/10.1038/s41392-018-0018-5.

30. van Grieken NC, Meijer GA, zur Hausen A, Meuwissen SG, Baak JP, Kuipers EJ. Increased apoptosis in gastric mucosa adjacent to intestinal metaplasia. J Clin Pathol. 2003;56(5):358–361. https://doi.org/10.1136/jcp.56.5.358.

31. Yamaguchi T, Nakajima N, Kuwayama H, Ito Y, Iwasaki A, Arakawa Y. Gastric epithelial cell proliferation and apoptosis in Helicobacter pylori-infected mice. Aliment Pharmacol Ther. 2000;14(Suppl. 1):68–73. https://doi.org/10.1046/j.1365-2036.2000.014s1068.x.

32. Mimuro H, Suzuki T, Nagai S, Rieder G, Suzuki M, Nagai T et al. Helicobacter pylori dampens gut epithelial self-renewal by inhibiting apoptosis, a bacterial strategy to enhance colonization of the stomach. Cell Host Microbe. 2007;2(4):250–263. https://doi.org/10.1016/j.chom.2007.09.005.

33. Shu F, Xiao H, Li QN, Ren XS, Liu ZG, Hu BW et al. Epigenetic and posttranslational modifications in autophagy: biological functions and therapeutic targets. Signal Transduct Target Ther. 2023;8(1):32. https://doi.org/10.1038/s41392-022-01300-8.

34. Yamaguchi N, Sakaguchi T, Isomoto H, Inamine T, Ueda H, Fukuda D et al. ATG16L1 and ATG12 Gene Polymorphisms Are Involved in the Progression of Atrophic Gastritis. J Clin Med. 2023;12(16):5384. https://doi.org/10.3390/jcm12165384.

35. Yamaguchi N, Sakaguchi T, Taira M, Fukuda D, Ohnita K, Hirayama T et al. Autophagy-Related Gene ATG7 Polymorphism Could Potentially Serve as a Biomarker of the Progression of Atrophic Gastritis. J Clin Med. 2024;13(2):629. https://doi.org/10.3390/jcm13020629.

36. Xie C, Li N, Wang H, He C, Hu Y, Peng C et al. Inhibition of autophagy aggravates DNA damage response and gastric tumorigenesis via Rad51 ubiquitination in response to H. pylori infection. Gut Microbes. 2020;11(6):1567–1589. https://doi.org/10.1080/19490976.2020.1774311.

37. Yang JC, Chien CT. A new approach for the prevention and treatment of Helicobacter pylori infection via upregulation of autophagy and downregulation of apoptosis. Autophagy. 2009;5(3):413–414. https://doi.org/10.4161/auto.5.3.7826.

38. Zhu P, Xue J, Zhang ZJ, Jia YP, Tong YN, Han D et al. Helicobacter pylori VacA induces autophagic cell death in gastric epithelial cells via the endoplasmic reticulum stress pathway. Cell Death Dis. 2017;8(12):3207. https://doi.org/10.1038/s41419-017-0011-x.

39. Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther. 2021;6(1):128. https://doi.org/10.1038/s41392-021-00507-5.

40. Zhou J, Qiu J, Song Y, Liang T, Liu S, Ren C et al. Pyroptosis and degenerative diseases of the elderly. Cell Death Dis. 2023;14(2):94. https://doi.org/10.1038/s41419-023-05634-1.

41. Kumar S, Dhiman M. Inflammasome activation and regulation during Helicobacter pylori pathogenesis. Microb Pathog. 2018;125:468–474. https://doi.org/10.1016/j.micpath.2018.10.012.

42. Zhang X, Li C, Chen D, He X, Zhao Y, Bao L et al. H. pylori CagA activates the NLRP3 inflammasome to promote gastric cancer cell migration and invasion. Inflamm Res. 2022;71(1):141–155. https://doi.org/10.1007/s00011-021-01522-6.

43. Liu D, Peng J, Xie J, Xie Y. Comprehensive analysis of the function of helicobacter-associated ferroptosis gene YWHAE in gastric cancer through multi-omics integration, molecular docking, and machine learning. Apoptosis. 2024;29(3-4):439–456. https://doi.org/10.1007/s10495-023-01916-3.

44. Zhu W, Liu D, Lu Y, Sun J, Zhu J, Xing Y et al. PHKG2 regulates RSL3-induced ferroptosis in Helicobacter pylori related gastric cancer. Arch Biochem Biophys. 2023;740:109560. https://doi.org/10.1016/j.abb.2023.109560.

45. Zhao Y, Zhao J, Ma H, Han Y, Xu W, Wang J et al. High Hepcidin Levels Promote Abnormal Iron Metabolism and Ferroptosis in Chronic Atrophic Gastritis. Biomedicines. 2023;11(9):2338. https://doi.org/10.3390/biomedicines11092338.

46. Liu C, Ng SK, Ding Y, Lin Y, Liu W, Wong SH et al. Meta-analysis of mucosal microbiota reveals universal microbial signatures and dysbiosis in gastric carcinogenesis. Oncogene. 2022;41(28):3599–3610. https://doi.org/10.1038/s41388-022-02377-9.

47. Parsons BN, Ijaz UZ, D’Amore R, Burkitt MD, Eccles R, Lenzi L et al. Comparison of the human gastric microbiota in hypochlorhydric states arising as a result of Helicobacter pylori-induced atrophic gastritis, autoimmune atrophic gastritis and proton pump inhibitor use. PLoS Pathog. 2017;13(11):e1006653. https://doi.org/10.1371/journal.ppat.1006653.

48. Guo Y, Cao XS, Guo GY, Zhou MG, Yu B. Effect of Helicobacter Pylori Eradication on Human Gastric Microbiota: A Systematic Review and MetaAnalysis. Front Cell Infect Microbiol. 2022;12:899248. https://doi.org/10.3389/fcimb.2022.899248.

49. Conti L, Borro M, Milani C, Simmaco M, Esposito G, Canali G et al. Gastric microbiota composition in patients with corpus atrophic gastritis. Dig Liver Dis. 2021;53(12):1580–1587. https://doi.org/10.1016/j.dld.2021.05.005.

50. Fu K, Cheung AHK, Wong CC, Liu W, Zhou Y, Wang F et al. Streptococcus anginosus promotes gastric inflammation, atrophy, and tumorigenesis in mice. Cell. 2024;187(4):882–896.e17. https://doi.org/10.1016/j.cell.2024.01.004.

51. Rugge M, Genta RM, Malfertheiner P, Dinis-Ribeiro M, El-Serag H, Graham DY et al; RE.GA.IN; RE GA IN. RE.GA.IN.: the Real-world Gastritis Initiative-updating the updates. Gut. 2024;73(3):407–441. https://doi.org/10.1136/gutjnl-2023-331164.

52. Shah SC, Piazuelo MB, Kuipers EJ, Li D. AGA Clinical Practice Update on the Diagnosis and Management of Atrophic Gastritis: Expert Review. Gastroenterology. 2021;161(4):1325–1332.e7. https://doi.org/10.1053/j.gastro.2021.06.078.

53. Syrjänen K, Eskelinen M, Peetsalu A, Sillakivi T, Sipponen P, Härkönen M et al. GastroPanel® Biomarker Assay: The Most Comprehensive Test for Helicobacter pylori Infection and Its Clinical Sequelae. A Critical Review. Anticancer Res. 2019;39(3):1091–1104. https://doi.org/10.21873/anticanres.13218.

54. Cui J, Liu Y, Hu Y, Tong J, Li A, Qu T et al. NMR-based metabonomics and correlation analysis reveal potential biomarkers associated with chronic atrophic gastritis. J Pharm Biomed Anal. 2017;132:77–86. https://doi.org/10.1016/j.jpba.2016.09.044.

55. Jia J, Zhao H, Li F, Zheng Q, Wang G, Li D, Liu Y. Research on drug treatment and the novel signaling pathway of chronic atrophic gastritis. Biomed Pharmacother. 2024;176:116912. https://doi.org/10.1016/j.biopha.2024.116912.

56. Maev IV, Andreev DN, Samsonov AA, Fomenko AK. H. pylori-associated chronic gastritis: status update on the problem. Meditsinskiy Sovet. 2022;16(15):35–45. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-15-35-45.

57. Andreev DN, Bordin DS, Nikolskaya KА, Dzhafarova AR, Cherenkova VV. Current trends in Helicobacter pylori eradication therapy. Meditsinskiy Sovet. 2023;17(8):18–27. (In Russ.) https://doi.org/10.21518/ms2023-134.

58. Sugano K. Effect of Helicobacter pylori eradication on the incidence of gastric cancer: a systematic review and meta-analysis. Gastric Cancer. 2019;22(3):435–445. https://doi.org/10.1007/s10120-018-0876-0.

59. Ford AC, Yuan Y, Moayyedi P. Helicobacter pylori eradication therapy to prevent gastric cancer: systematic review and meta-analysis. Gut. 2020;69(12):2113–2121. https://doi.org/10.1136/gutjnl-2020-320839.

60. Chen HN, Wang Z, Li X, Zhou ZG. Helicobacter pylori eradication cannot reduce the risk of gastric cancer in patients with intestinal metaplasia and dysplasia: evidence from a meta-analysis. Gastric Cancer. 2016;19(1):166–175. https://doi.org/10.1007/s10120-015-0462-7.

61. Rokkas T, Rokka A, Portincasa P. A systematic review and meta-analysis of the role of Helicobacter pylori eradication in preventing gastric cancer. Ann Gastroenterol. 2017;30(4):414–423. https://doi.org/10.20524/aog.2017.0144.

62. Arakawa T, Higuchi K, Fujiwara Y, Watanabe T, Tominaga K, Sasaki E et al. 15th anniversary of rebamipide: looking ahead to the new mechanisms and new applications. Dig Dis Sci. 2005;50(Suppl. 1):S3-S11. https://doi.org/10.1007/s10620-005-2800-9.

63. Andreev DN, Maev IV. Rebamipide: evidence base for use in gastroenterology. Terapevticheskii Arkhiv. 2020;92(12):97–104. (In Russ.) https://doi.org/10.26442/00403660.2020.12.200455.

64. Li M, Yin T, Lin B. Rebamipide for chronic gastritis: a meta-analysis. Chinese J Gastroenterol Hepatol. 2015;24:667–673.

65. Haruma K, Ito M, Kido S, Manabe N, Kitadai Y, Sumii M et al. Long-term rebamipide therapy improves Helicobacter pylori-associated chronic gastritis. Dig Dis Sci. 2002;47(4):862–867. https://doi.org/10.1023/a:1014716822702.

66. Kamada T, Sato M, Tokutomi T, Watanabe Т, Murao Т, Matsumoto H et al. Rebamipide improves chronic inflammation in the lesser curvature of the corpus after Helicobacter pylori eradication: a multicenter study. Biomed Res Int. 2015;2015:865146. https://doi.org/10.1155/2015/865146.

67. Lee JS, Jeon SW, Lee HS, Kwon YH, Nam SY, Bae HI, Seo AN. Rebamipide for the Improvement of Gastric Atrophy and Intestinal Metaplasia: A Prospective, Randomized, Pilot Study. Dig Dis Sci. 2022;67(6):2395–2402. https://doi.org/10.1007/s10620-021-07038-7.

68. Bakulin IG, Sushilova AG, Zharkov AV, Malkov VA. Effectiveness of 6-Month Rebamipide Therapy in Chronic Atrophic Gastritis: Results of the OPLOT Study. Effective Pharmacotherapy. 2024;20(46):28–23. (In Russ.) Available at: https://umedp.ru/articles/effektivnost_shestimesyachnoy_terapii_rebamipidom_pri_khronicheskom_atroficheskom_gastrite_rezultaty.html.

69. Maev IV, Kucheryavyj YuA, Andreev DN. Modern approaches to antihelicobacter therapy optimization. Lechaschi Vrach. 2014;(4):73–79. (In Russ.) Available at: https://www.lvrach.ru/2014/04/15435943.

70. Andreev DN, Kucheryavyy YA. Micro- and macroorganism factors affecting the efficacy of anti-Helicobacter therapy. Consilium Medicum. 2013;15(8):5–9. (In Russ.) Available at: https://consilium.orscience.ru/2075-1753/article/view/93851.

71. Maev IV, Samsonov AA, Andreev DN, Kochetov SA, Andreev NG, Dicheva DT. Current aspects of diagnosis and treatment of Helicobacter pylori infection. Meditsinskiy Sovet. 2012;(8):10–19. (In Russ.) Available at: https://www.gastroscan.ru/literature/authors/7082.

72. Nishizawa T, Nishizawa Y, Yahagi N, Kanai T, Takahashi M, Suzuki H. Effect of supplementation with rebamipide for Helicobacter pylori eradication therapy: a systematic review and meta-analysis. J Gastroenterol Hepatol. 2014;29(Suppl. 4):20–24. https://doi.org/10.1111/jgh.12769.

73. Andreev DN, Maev IV, Dicheva DT. Efficiency of the Inclusion of Rebamipide in the Eradication Therapy for Helicobacter pylori Infection: Meta-Analysis of Randomized Controlled Studies. J Clin Med. 2019;8(9):1498. https://doi.org/10.3390/jcm8091498.

74. Andreev DN, Maev IV, Bordin DS, Lyamina SV, Dicheva DT, Fomenko AK, Bagdasarian AS. Effectiveness of Rebamipide as a part of the Helicobacter pylori eradication therapy in Russia: a meta-analysis of controlled trials. Consilium Medicum. 2022;24(5):333–338. (In Russ.) https://doi.org/10.26442/20751753.2022.5.201863.

75. Ivashkin VT, Maev IV, Lapina TL, Kucheryavyy YuA, Abdulkhakov SR, Alekseeva OP et al. H. pylori-Associated Gastritis, Gastritis after H. pylori Eradication and H. pylori-Negative Gastritis: Algorithm of Diagnosis and Treatment (Literature Review and Resolution of the Expert Panel of the Russian Gastroenterological Association). Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2024;34(3):7–23. (In Russ.) https://doi.org/10.22416/1382-4376-2024-34-3-7-23.


Review

For citations:


Ovsepian MA, Andreev DN, Samsonov AA. Etiological and pathogenetic characteristics of chronic atrophic gastritis. Meditsinskiy sovet = Medical Council. 2025;(5):77-88. (In Russ.) https://doi.org/10.21518/ms2025-148

Views: 65


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)