Modern concepts of preeclampsia development and prediction
https://doi.org/10.21518/ms2025-144
Abstract
Preeclampsia (PE) is a gestational neuroimmunocomplex endotheliosis that develops as a fundamental stereochemical process in which the trigger that activates complement along an abnormal pathway and launches a cytokine cascade are neurospecific proteins of the fetal neocortex in the antenatal period of its development. The most well-known clinical consequences of PE are not only FGR, but also prematurity, as well as a significantly more frequent development of individual pathological conditions of the early neonatal period. The development of parameters in the field of PE prediction is an important and necessary stage in the formation of a risk group and personalization of the pregnancy management strategy, and high reliability of the forecast can help to reduce the frequency of hyperdiagnosis. In this regard, a different concept of the nature and essence of preeclampsia is presented, not only as a hypertensive condition during pregnancy combined with placental insufficiency, but as a general pathological specific neuroimmunocomplex gestational endotheliosis, in which neurospecific proteins of the developing fetal brain during the period of formation, construction, active growth and isolation of the neocortex are considered as an antigen that disrupts the activation of complement proteins and stimulates the release of proinflammatory cytokines. Analysis of numerous studies has shown the high diagnostic potential of various biomarkers and their combination with instrumental and clinical examination methods. This concept of PE allows us to propose a new pathogenetic approach to the management of patients with this pregnancy complication. Considering PE as a gestational immune complex complement-mediated endotheliosis, it is possible to plan further studies on the effectiveness and safety of targeted therapy blocking unrestrained uncontrolled activation of the complement system.
About the Authors
A. M. PrikhodkoRussian Federation
Andrey M. Prikhodko, Dr. Sci. (Med.), Physician of the 1st Maternity Ward, Leading Researcher of the 1st Maternity Ward
4, Academician Oparin St., Moscow, 117997
V. V. Loginov
Russian Federation
Viktor V. Loginov, Cand. Sci. (Med.), Head of the Laboratory of Neurophysiology
4, Academician Oparin St., Moscow, 117997
O. V. Tysyachnyi
Russian Federation
Oleg V. Tysyachnyi, Cand. Sci. (Med.), Research Associate of the 1st Maternity Ward
4, Academician Oparin St., Moscow, 117997
A. Yu. Romanov
Russian Federation
Andrey Yu. Romanov, Cand. Sci. (Med.), Head of the Department of Planning and Support of Scientific Projects
4, Academician Oparin St., Moscow, 117997
O. R. Baev
Russian Federation
Oleg R. Baev, Dr. Sci. (Med.), Professor, Head of the 1st Maternity Ward, Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology; Professor of the Department of Obstetrics, Gynecology, Perinatology and Reproductology, Sechenov First Moscow State Medical University (Sechenov University)
4, Academician Oparin St., Moscow, 117997,
8, Bldg. 2, Trubetskaya St., Moscow, 119991
References
1. Mastrolia SA, Mazor M, Loverro G, Klaitman V, Erez O. Placental vascular pathology and increased thrombin generation as mechanisms of disease in obstetrical syndromes. PerrJ. 2014;18(2):e653. https://doi.org/10.7717/peerj.653.
2. Moustafa ASZ, Yimer W, Perry A, Solis L, Belk S, Morris R et al. Report from a text-based blood pressure monitoring prospective cohort trial among postpartum women with hypertensive disorders of pregnancy. BMC Pregnancy Childbirth. 2024;24(1):340. https://doi.org/10.1186/s12884-024-06511-1.
3. Poon LC, Shennan A, Hyett JA, Kapur A, Hadar E, Divakar H et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on preeclampsia: A pragmatic guide for first-trimester screening and prevention. Int J Gynaecol Obstet. 2019;145(1):1–33. https://doi.org/10.1002/ijgo.12802.
4. O’Gorman N, Wright D, Poon LC, Rolnik DL, Syngelaki A, de Alvarado M et al. Multicenter screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation: comparison with NICE guidelines and ACOG recommendations. Ultrasound Obstet Gynecol. 2017;49(6):756–760. https://doi.org/10.1002/uog.17455.
5. Marić I, Tsur A, Aghaeepour N, Montanari A, Stevenson DK, Shaw GM, Winn VD. Early prediction of preeclampsia via machine learning. Am J Obstet Gynecol MFM. 2020;2(2):100100. https://doi.org/10.1016/j.ajogmf.2020.100100.
6. Atadzhanov TV, Navzhuvanova GS, Gulakova DM, Ristamov NA. Features of changes of fetoplacental endocrine function and central hemodynamics in pregnant women at preeclampsia. Avicenna Bulletin. 2011;(3):75–77. (In Russ.) https://doi.org/10.25005/2074-0581-2011-13-3-75-77.
7. Khorami-Sarvestani S, Vanaki N, Shojaeian S, Zarnani K, Stensballe A, Jeddi-Tehrani M, Zarnani AH. Placenta: an old organ with new functions. Front Immunol. 2024;15:1385762. https://doi.org/10.3389/fimmu.2024.1385762.
8. Khodzhaeva ZS, Kholin AM, Vikhlyaeva EM. Early and late preeclampsia: paradigms of pathobiology and clinical practice. Akusherstvo i Ginekologiya (Russian Federation). 2013;(10):4–11. (In Russ.) Available at: https://ru.aigjournal.ru/articles/Rannyaya-i-pozdnyaya-preeklampsiya-paradigmypatobiologii-i-klinicheskaya-praktika.html.
9. Pavlova TV, Petrukhin VA, Kaplin AN, Malyutina ES, Selivanova AV, Zemlyanskaya LO. New approaches in assessing the clinical and pathomorphological aspects of obstetric pathology in the structure of the motherplacenta-fetus using atomic force microscopy. Russian Bulletin of ObstetricianGynecologist. 2021;21(1):16–21. (In Russ.) https://doi.org/10.17116/rosakush20212101116.
10. Sereke SG, Omara RO, Bongomin F, Sarah Nakubulwa S, Kisembo HN. Prospective verification of sonographic fetal weight estimators among term parturients in Uganda. BMC Pregnancy Childbirth. 2021;21(1):175. https://doi.org/10.1186/sl2884-021-03645-4.
11. Shinar S, Tigert M, Agrawal S, Parks WA, Kingdom JC. Placental growth factor as a diagnostic tool for placental mediated fetal growth restriction. Pregnancy Hypertens. 2021;25:123–128. https://doi.org/10.1016/j.preghy.2021.05.023.
12. Melamed N, Baschat A, Yinon Y, Athanasiadis A, Mecacci F, Figueras F et al. FIGO (international Federation of Gynecology and Obstetrics) initiative on fetal growth: best practice advice for screening, diagnosis, and management of fetal growth restriction. Int J Gynaecol Obstet. 2021;152(1):3–57. https://doi.org/10.1002/ijgo.13522.
13. Bachmann LM, Khan KS, Ogah J, Owen P. Multivariable analysis of tests for the diagnosis of intrauterine growth restriction. Ultrasound Obstet Gynecol. 2003;21(4):370–374. https://doi.org/10.1002/uog.77.
14. Pini N, Lucchini M, Esposito G, Tagliaferri S, Campanile M, Magenes G, Signorini MG. A machine learning approach to monitor the emergence of late intrauterine growth restriction. Front Artif Intell. 2021;4:622616. https://doi.org/10.3389/frai.2021.622616.
15. Lee KS, Kim HY, Lee SJ, Kwon SO, Na S, Hwang HS et al. Prediction of newborn’s body mass index using nationwide multicenter ultrasound data: a machinelearning study. BMC Pregnancy Childbirth. 2021;21(1):172. https://doi.org/10.1186/sl2884-021-03660-5.
16. Bahado-Singh RO, Yilmaz A, Bisgin H, Turkoglu О, Kumar P, Sherman E et al. Artificial intelligence and the analysis of multi-platform metabolomics data for the detection of intrauterine growth restriction. PLoS ONE. 2019;14(4):e0214121. https://doi.org/10.1371/journal.pone.0214121.
17. Kinzhalova SV, Makarov RA, Bychkova SV, Davydova NS, Pestryaeva LA. Features of early neonatal adaptation in infants born to mothers with hypertensive disorders of pregnancy. Russian Bulletin of Perinatology and Pediatrics. 2016;61(6):54–58. (In Russ.) https://doi.org/10.21508/1027-4065-2016-61-6-54-58.
18. Ulfsdottir H, Grandahl M, Björk J, Karlemark S, Ekéus C. Share. The association between pre-eclampsia and neonatal complications in relation to gestational age. Acta Paediatr. 2024;113(3):426–433. https://doi.org/10.1111/apa.17080.
19. Barsukov AV, Glukhovskoy DV, Talantseva MS, Bagaeva ZV, Pronina EV, Zobnina MP et al. Left ventricular hypertrophy and the renin-angiotensinaldosterone system: focusing on AT1 angiotensin receptor blockers. Systemic Hypertension. 2013;10(1):88–96. (In Russ.) Available at: https://www.syst-hypertension.ru/jour/article/view/286.
20. Crevet L, Vanacker JM. Regulation of the expression estrogen related receptors (ERRs). Cell Mol Life Sci. 2020;77(22):4573–4579. https://doi.org/10.1007/s00018-020-03549-0.
21. Yousif D, Bellos I, Penzlin AI, Hijazi MM, Illigens BM, Pinter A, Siepmann T. Autonomic Dysfunction in Preeclampsia: A Systematic Review. Front Neurol. 2019;10:816. https://doi.org/10.3389/fneur.2019.00816.
22. Townsend R, Khalil A, Premakumar Y, Allotey J, Snell KIE, Chan C et al. Prediction of pre-eclampsia: review of reviews. Ultrasound Obstet Gynecol. 2019;54(1):16–27. https://doi.org/10.1002/uog.20117.
23. Brussé IA, Peters NC, Steegers EA, Duvekot JJ, Visser GH. Electroencephalography during normotensive and hypertensive pregnancy: a systematic review. Obstet Gynecol Surv. 2010;65(12):794–803. https://doi.org/10.1097/OGX.0b013e31821286f1.
24. Chekhonin VP, Lebedev SV, Dmitrieva TB, Blinov DV, Gurina OI, Semenova AV, Volodin NN. Enzyme immunoassay of NSE and GFAP as the criterion of dynamic evaluation of the rat blood-brain barrier in perinatal hypoxic ischemic injury of the CNS. Bull Exp Biol Med. 2003;136(3):261–265. https://doi.org/10.1023/b:bebm.0000008978.27644.4b.
25. Murthy S, Ryan A, He C, Mallampalli RK, Carter AB. Rac1-mediated mitochondrial H2O2 generation regulates MMP-9 gene expression in macrophages via inhibition of SP-1 and AP-1. J Biol Chem. 2010;285(32):25062–25073. http://doi.org/10.1074/jbc.M109.099655.
26. Shifman EM, Tikhova GP, Floka SE. Clinical and physiological features of neurological complications of eclampsia: a systematic review. Akusherstvo i Ginekologiya (Russian Federation). 2010;(5):6–14. (In Russ.) Available at: https://aig-journal.ru/articles/Kliniko-fiziologicheskie-osobennosti-razvitiyanevrologicheskih-oslojnenii-eklampsii-sistematicheskii-obzor.html.
27. Kligunenko EN, Volkov AO. The interrelation of pro- and antiinflammatory cytokines in the third trimester of pregnancy. Emergency Medicine. 2014;62(7):131–133. (In Russ.) Available at: https://elibrary.ru/tzcejf.
28. Maitra U, Davis S, Reilly CM, Li L. Differential regulation of Foxp3 and IL-17 expression in CD4 T helpercells by IRAK-1. J Immunol. 2009;182(9):5763–5769. https://doi.org/10.4049/jimmunol.0900124.
29. Nefedova DD, Linde VA, Levkovich MA. Immunological aspects of pregnancy (review). Medical Herald of the South of Russia. 2013;(4):16–21. (In Russ.) https://doi.org/10.21886/2219-8075-2013-4-16-21.
30. LaMarca B, Brewer J, Wallace K. IL-6-induced pathophysiology during preeclampsia: potential therapeutic role for magnesium sulfate? Lancet. 2011;2011(3):59–64. https://doi.org/10.2147/IJICMR.S16320.
31. Andreoli L, Regola F, Caproli A, Crisafulli F, Fredi M, Lazzaroni MG et al. Pregnancy in antiphospholipid syndrome: what should a rheumatologist know? Rheumatology. 2024;63(SI):SI86-SI95. https://doi.org/10.1093/rheumatology/kead537.
32. Holers VM. The spectrum of complement alternative pathway-mediated diseases. Immunol Rev. 2008;223:300–316. https://doi.org/10.1111/j.1600-065X.2008.00641.x.
33. Сухих ГТ, Мурашко ЛЕ (ред.). Преэклампсия. М.: ГЭОТАР-Медиа; 2010. 576 с.
34. Pierik E, Prins JR, van Goor H, Dekker GA, Daha MR, Seelen MAJ, Scherjon SA. Dysregulation of Complement Activation and Placental Dysfunction: A Potential Target to Treat Preeclampsia? Front Immunol. 2020;10:3098. https://doi.org/10.3389/fimmu.2019.03098.
35. Sutton EF, Gemmel M, Brands J, Gallaher MJ, Powers RW. Paternal deficiency of complement componentC1q leads to a preeclampsia-like pregnancy in wild-type female mice and vascular adaptations postpartum. Am J Physiol Regul Integr Comp Physiol. 2020;318(6):R1047–R1057. https://doi.org/10.1152/ajpregu.00353.2019.
36. Sidorova IS, Nikitina NA. Preeclampsia as gestational immune complex complement-mediated endotheliosis. Russian Bulletin of Obstetrician-Gynecologist. 2019;19(1):5–11. (In Russ.) https://doi.org/10.17116/rosakush2019190115.
37. Novak CM, Ozen M, Burd I. Perinatal Brain Injury: Mechanisms, Prevention, and Outcomes. Clin Perinatol. 2018;45(2):357–375. https://doi.org/10.1016/j.clp.2018.01.015.
38. Sidorova IS, Nikitina NA. A scientifically based prediction system for preeclampsia. Akusherstvo i Ginekologiya. 2017;(3):55–61. (In Russ.) https://doi.org/10.18565/aig.2017.3.55-61.
Review
For citations:
Prikhodko AM, Loginov VV, Tysyachnyi OV, Romanov AY, Baev OR. Modern concepts of preeclampsia development and prediction. Meditsinskiy sovet = Medical Council. 2025;(5):136-144. (In Russ.) https://doi.org/10.21518/ms2025-144