Preview

Медицинский Совет

Расширенный поиск

Изменение состава кишечной микробиоты у пациентов с предиабетом и сахарным диабетом 2-го типа

https://doi.org/10.21518/ms2025-032

Аннотация

Предиабет является фактором риска развития сахарного диабета 2-го типа (СД2), а также его осложнений. Распространенность предиабета и сахарного диабета резко возросла в последние десятилетия. Известно, что нерациональное питание и малоподвижный образ жизни способствуют возникновению СД2. Однако в последнее время все больше внимания уделяется роли кишечной микробиоты в патогенезе и прогрессировании нарушений углеводного обмена. Микробиота кишечника играет ключевую роль в обмене веществ, иммуномодуляции и общем состоянии здоровья человека, а изменения в составе кишечной микробиоты связаны со многими заболеваниями, включая нарушение уровня глюкозы натощак, нарушение толерантности к глюкозе, повышенную резистентность к инсулину и хроническое вялотекущее воспаление. Цель данного обзора – рассмотреть изменение состава кишечной микробиоты у пациентов с предиабетом и СД2, его влияние на метаболизм. Также в обзоре будет освещена роль таких факторов, как диета и физические упражнения, прием метформина, препаратов группы агонистов рецепторов глюкагоноподобного пептида-1 (арГПП-1), пробиотиков и синбиотиков в изменении состава кишечной микробиоты. Ряд исследований подтверждает, что структурные и функциональные изменения микробиоты кишечника присутствуют не только при СД2, но и при предиабете. Эти данные свидетельствуют о том, что микробиота кишечника может стать мишенью для новых подходов в профилактике развития СД 2 типа. Модуляция микробиоты кишечника с помощью пробиотиков, синбиотиков может иметь положительный эффект при лечении СД2 и связанных с ним осложнений, однако необходимы дальнейшие исследования.

Об авторах

О. А. Мыринова
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Россия

Мыринова Ольга Александровна, аспирант кафедры эндокринологии 

119991, Россия, Москва, ул. Трубецкая, д. 8, стр. 2 



А. А. Тульский
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Россия

Тульский Андрей Алексеевич, аспирант кафедры эндокринологии

119991, Россия, Москва, ул. Трубецкая, д. 8, стр. 2 



А. О. Щетинина
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Россия

Щетинина Анна Олеговна, к.м.н., ассистент кафедры эндокринологии

119991, Россия, Москва, ул. Трубецкая, д. 8, стр. 2 



Н. С. Мартиросян
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Россия

Мартиросян Нарине Степановна, к.м.н., доцент кафедры эндокринологии

119991, Россия, Москва, ул. Трубецкая, д. 8, стр. 2 



И. А. Кузина
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Россия

Кузина Ирина Александровна, ассистент кафедры эндокринологии

119991, Россия, Москва, ул. Трубецкая, д. 8, стр. 2 



Е. В. Гончарова
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Россия

Гончарова Екатерина Валерьевна, к.м.н., доцент кафедры эндокринологии

119991, Россия, Москва, ул. Трубецкая, д. 8, стр. 2 



М. Э. Тельнова
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Россия

Тельнова Милена Эдуардовна, к.м.н., доцент кафедры эндокринологии

119991, Россия, Москва, ул. Трубецкая, д. 8, стр. 2 



Э. А. Эльмурзаева
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Россия

Эльмурзаева Эльмира Акрамовна, студент Института клинической медицины имени Н.В. Склифосовского

119991, Россия, Москва, ул. Трубецкая, д. 8, стр. 2 



Н. А. Петунина
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Россия

Петунина Нина Александровна, чл.- корр. РАН, д.м.н., профессор, заведующая кафедрой эндокринологии

119991, Россия, Москва, ул. Трубецкая, д. 8, стр. 2 



Список литературы

1. Diener C, Reyes-Escogido ML, Jimenez-Ceja LM, Matus M, Gomez-Navarro CM, Chu ND et al. Progressive Shifts in the Gut Microbiome Reflect Prediabetes and Diabetes Development in a Treatment-Naive Mexican Cohort. Front Endocrinol. 2021;11:602326. https://doi.org/10.3389/fendo.2020.602326.

2. Iatcu CO, Steen A, Covasa M. Gut Microbiota and Complications of Type-2 Diabetes. Nutrients. 2021;14(1):166. https://doi.org/10.3390/nu14010166.

3. Wu H, Tremaroli V, Schmidt C, Lundqvist A, Olsson LM, Krämer M et al. The Gut Microbiota in Prediabetes and Diabetes: A Population-Based Cross-Sectional Study. Cell Metab. 2020;32(3):379–390.e3. https://doi.org/10.1016/j.cmet.2020.06.011.

4. Moffa S, Mezza T, Cefalo CMA, Cinti F, Impronta F, Sorice GP et al. The Interplay between Immune System and Microbiota in Diabetes. Mediators Inflamm. 2019;2019:9367404. https://doi.org/10.1155/2019/9367404.

5. Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, Mele MC. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms. 2019;7(1):14. https://doi.org/10.3390/microorganisms7010014.

6. Zhang D, Jian YP, Zhang YN, Li Y, Gu LT, Sun HH et al. Short-chain fatty acids in diseases. Cell Commun Signal. 2023;21(1):212. https://doi.org/10.1186/s12964-023-01219-9.

7. Masse KE, Lu VB. Short-chain fatty acids, secondary bile acids and indoles: gut microbial metabolites with effects on enteroendocrine cell function and their potential as therapies for metabolic disease. Front Endocrinol. 2023;25;14:1169624. https://doi.org/10.3389/fendo.2023.1169624.

8. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell. 2016;165(6):1332–1345. https://doi.org/10.1016/j.cell.2016.05.041.

9. Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G et al. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front Immunol. 2019;10:277. https://doi.org/10.3389/fimmu.2019.00277.

10. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7(3):189–200. https://doi.org/10.1080/19490976.2015.1134082.

11. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262–266. https://doi.org/10.1038/nature15766.

12. Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SE et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015;64(11):1744–1754. https://doi.org/10.1136/gutjnl-2014-307913.

13. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61(2):364–371. https://doi.org/10.2337/db11-1019.

14. Zeng Y, Wu Y, Zhang Q, Xiao X. Crosstalk between glucagon-like peptide 1 and gut microbiota in metabolic diseases. mBio. 2024;15(1):e0203223. https://doi.org/10.1128/mbio.02032-23.

15. Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE. 2013;8(8):e71108. https://doi.org/10.1371/journal.pone.0071108.

16. Zhang Z, Tian T, Chen Z, Liu L, Luo T, Dai J. Characteristics of the gut microbiome in patients with prediabetes and type 2 diabetes. Peer J. 2021;24;9:e10952. https://doi.org/10.7717/peerj.10952.

17. Egshatyan L, Kashtanova D, Popenko A, Tkacheva O, Tyakht A, Alexeev D et al. Gut microbiota and diet in patients with different glucose tolerance. Endocr Connect. 2016;5(1):1–9. https://doi.org/10.1530/EC-15-0094.

18. Belzer C, de Vos WM. Microbes inside – from diversity to function: the case of Akkermansia. ISME J. 2012;6(8):1449–1458. https://doi.org/10.1038/ismej.2012.6.

19. Diener C, Reyes-Escogido ML, Jimenez-Ceja LM, Matus M, Gomez-Navarro CM, Chu ND et al. Progressive Shifts in the Gut Microbiome Reflect Prediabetes and Diabetes Development in a Treatment-Naive Mexican Cohort. Front Endocrinol. 2021;11:602326. https://doi.org/10.3389/fendo.2020.602326.

20. Allin KH, Tremaroli V, Caesar R, Jensen BAH, Damgaard MTF, Bahl MI et al. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia. 2018;61(4):810–820. https://doi.org/10.1007/s00125-018-4550-1.

21. Wang L, Yu X, Xu X, Ming J, Wang Z, Gao B et al. The Fecal Microbiota Is Already Altered in Normoglycemic Individuals Who Go on to Have Type 2 Diabetes. Front Cell Infect Microbiol. 2021;11:598672. https://doi.org/10.3389/fcimb.2021.598672.

22. Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23(7):850–858. https://doi.org/10.1038/nm.4345.

23. De la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, Velásquez-Mejía EP, Carmona JA, Abad JM, Escobar JS. Metformin Is Associated With Higher Relative Abundance of Mucin-Degrading Akkermansia muciniphila and Several Short-Chain Fatty Acid-Producing Microbiota in the Gut. Diabetes Care. 2017;40(1):54–62. https://doi.org/10.2337/dc16-1324.

24. Wang Z, Saha S, Van Horn S, Thomas E, Traini C, Sathe G et al. Gut microbiome differences between metformin- and liraglutide-treated T2DM subjects. Endocrinol Diabetes Metab. 2017;1(1):e00009. https://doi.org/10.1002/edm2.9.

25. Ying X, Rongjiong Z, Kahaer M, Chunhui J, Wulasihan M. Therapeutic efficacy of liraglutide versus metformin in modulating the gut microbiota for treating type 2 diabetes mellitus complicated with nonalcoholic fatty liver disease. Front Microbiol. 2023;14:1088187. https://doi.org/10.3389/fmicb.2023.1088187.

26. Tsai CY, Lu HC, Chou YH, Liu PY, Chen HY, Huang MC et al. Gut Microbial Signatures for Glycemic Responses of GLP-1 Receptor Agonists in Type 2 Diabetic Patients: A Pilot Study. Front Endocrinol. 2022;12:814770. https://doi.org/10.3389/fendo.2021.814770.

27. Capehorn MS, Catarig AM, Furberg JK, Janez A, Price HC, Tadayon S et al. Efficacy and safety of once-weekly semaglutide 1.0 mg vs once-daily liraglutide 1.2 mg as add-on to 1–3 oral antidiabetic drugs in subjects with type 2 diabetes (SUSTAIN 10). Diabetes Metab. 2020;46(2):100–109. https://doi.org/10.1016/j.diabet.2019.101117.

28. Rubino DM, Greenway FL, Khalid U, O’Neil PM, Rosenstock J, Sørrig R et al. Effect of Weekly Subcutaneous Semaglutide vs Daily Liraglutide on Body Weight in Adults With Overweight or Obesity Without Diabetes: The STEP 8 Randomized Clinical Trial. JAMA. 2022;327(2):138–150. https://doi.org/10.1001/jama.2021.23619.

29. Аметов АС, Шохин ИЕ, Рогожина ЕА, Бодрова ТГ, Невретдинова МЕ, Белый ПА и др. Сравнительный анализ физико-химических свойств, биоэквивалентности, безопасности и переносимости отечественного семаглутида. Фармация и фармакология. 2023;11(4):324–346. https://doi.org/10.19163/2307-9266-2023-11-4-324-346.

30. Аметов АС, Шохин ИЕ, Рогожина ЕА, Бодрова ТГ, Невретдинова МЕ, Белый ПА и др. Российская разработка для лекарственной независимости в эндокринологии: сравнительный анализ биоэквивалентности, безопасности и переносимости первого отечественного лираглутида. Фармация и фармакология. 2023;11(3):255–276. https://doi.org/10.19163/2307-9266-2023-11-3-255-276.

31. García-Montero C, Fraile-Martínez O, Gómez-Lahoz AM, Pekarek L, Castellanos AJ, Noguerales-Fraguas F et al. Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota-Immune System Interplay. Implications for Health and Disease. Nutrients. 2021;13(2):699. https://doi.org/10.3390/nu13020699.

32. Campaniello D, Corbo MR, Sinigaglia M, Speranza B, Racioppo A, Altieri C, Bevilacqua A. How Diet and Physical Activity Modulate Gut Microbiota: Evidence, and Perspectives. Nutrients. 2022;14(12):2456. https://doi.org/10.3390/nu14122456.

33. Fava F, Gitau R, Griffin BA, Gibson GR, Tuohy KM, Lovegrove JA. The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population. Int J Obes. 2013;37(2):216–223. https://doi.org/10.1038/ijo.2012.33.

34. Beam A, Clinger E, Hao L. Effect of Diet and Dietary Components on the Composition of the Gut Microbiota. Nutrients. 2021;13(8):2795. https://doi.org/10.3390/nu13082795.

35. Pendyala S, Walker JM, Holt PR. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology. 2012;142(5):1100–1101.e2. https://doi.org/10.1053/j.gastro.2012.01.034.

36. O’Keefe SJD. Plant-based foods and the microbiome in the preservation of health and prevention of disease. Am J Clin Nutr. 2019;110(2):265–266. https://doi.org/10.1093/ajcn/nqz127.

37. Tosti V, Bertozzi B, Fontana L. Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. J Gerontol A Biol Sci Med Sci. 2018;73(3):318–326. https://doi.org/10.1093/gerona/glx227.

38. Wilson AS, Koller KR, Ramaboli MC, Nesengani LT, Ocvirk S, Chen C et al. Diet and the Human Gut Microbiome: An International Review. Dig Dis Sci. 2020;65(3):723–740. https://doi.org/10.1007/s10620-020-06112-w.

39. Garcia-Mantrana I, Selma-Royo M, Alcantara C, Collado MC. Shifts on Gut Microbiota Associated to Mediterranean Diet Adherence and Specific Dietary Intakes on General Adult Population. Front Microbiol. 2018;9:890. https://doi.org/10.3389/fmicb.2018.00890.

40. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R et al. Human genetics shape the gut microbiome. Cell. 2014;159(4):789–799. https://doi.org/10.1016/j.cell.2014.09.053.

41. Papa E, Docktor M, Smillie C, Weber S, Preheim SP, Gevers D et al. Noninvasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease. PLoS ONE. 2012;7(6):e39242. https://doi.org/10.1371/journal.pone.0039242.

42. Mitsou EK, Kakali A, Antonopoulou S, Mountzouris KC, Yannakoulia M, Panagiotakos DB, Kyriacou A. Adherence to the Mediterranean diet is associated with the gut microbiota pattern and gastrointestinal characteristics in an adult population. Br J Nutr. 2017;117(12):1645–1655. https://doi.org/10.1017/S0007114517001593.

43. De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65(11):1812–1821. https://doi.org/10.1136/gutjnl-2015-309957.

44. Lombardo M, Aulisa G, Marcon D, Rizzo G, Tarsisano MG, Di Renzo L et al. Association of Urinary and Plasma Levels of Trimethylamine N-Oxide (TMAO) with Foods. Nutrients. 2021;13(5):1426. https://doi.org/10.3390/nu13051426.

45. Campaniello D, Corbo MR, Sinigaglia M, Speranza B, Racioppo A, Altieri C, Bevilacqua A. How Diet and Physical Activity Modulate Gut Microbiota: Evidence, and Perspectives. Nutrients. 2022;14(12):2456. https://doi.org/10.3390/nu14122456.

46. Estaki M, Pither J, Baumeister P, Little JP, Gill SK, Ghosh S et al. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome. 2016;4(1):42. https://doi.org/10.1186/s40168-016-0189-7.

47. Liu Y, Wang Y, Ni Y, Cheung CKY, Lam KSL, Wang Y et al. Gut Microbiome Fermentation Determines the Efficacy of Exercise for Diabetes Prevention. Cell Metab. 2020;31(1):77–91.e5. https://doi.org/10.1016/j.cmet.2019.11.001.

48. Motiani KK, Collado MC, Eskelinen JJ, Virtanen KA, Löyttyniemi E, Salminen S et al. Exercise Training Modulates Gut Microbiota Profile and Improves Endotoxemia. Med Sci Sports Exerc. 2020;52(1):94–104. https://doi.org/10.1249/MSS.0000000000002112.

49. Allen JM, Mailing LJ, Niemiro GM, Moore R, Cook MD, White BA et al. Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans. Med Sci Sports Exerc. 2018;50(4):747–757. https://doi.org/10.1249/MSS.0000000000001495.

50. Bressa C, Bailén-Andrino M, Pérez-Santiago J, González-Soltero R, Pérez M, Montalvo-Lominchar MG et al. Differences in gut microbiota profile between women with active lifestyle and sedentary women. PLoS ONE. 2017;12(2):e0171352. https://doi.org/10.1371/journal.pone.0171352.

51. Ejtahed HS, Mohtadi-Nia J, Homayouni-Rad A, Niafar M, Asghari-Jafarabadi M, Mofid V. Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutrition. 2012;28(5):539–543. https://doi.org/10.1016/j.nut.2011.08.013.

52. Soltani S, Ashoori M, Dehghani F, Meshkini F, Clayton ZS, Abdollahi S. Effects of probiotic/synbiotic supplementation on body weight in patients with diabetes: a systematic review and meta-analyses of randomizedcontrolled trials. BMC Endocr Disord. 2023;23(1):86. https://doi.org/10.1186/s12902-023-01338-x.

53. Kassaian N, Feizi A, Aminorroaya A, Jafari P, Ebrahimi MT, Amini M. The effects of probiotics and synbiotic supplementation on glucose and insulin metabolism in adults with prediabetes: a double-blind randomized clinical trial. Acta Diabetol. 2018;55(10):1019–1028. https://doi.org/10.1007/s00592-018-1175-2.

54. Palacios T, Vitetta L, Coulson S, Madigan CD, Lam YY, Manuel R et al. Targeting the Intestinal Microbiota to Prevent Type 2 Diabetes and Enhance the Effect of Metformin on Glycaemia: A Randomised Controlled Pilot Study. Nutrients. 2020;12(7):2041. https://doi.org/10.3390/nu12072041.

55. Oh MR, Jang HY, Lee SY, Jung SJ, Chae SW, Lee SO, Park BH. Lactobacillus plantarum HAC01 Supplementation Improves Glycemic Control in Prediabetic Subjects: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients. 2021;13(7):2337. https://doi.org/10.3390/nu13072337.

56. Paul P, Kaul R, Harfouche M, Arabi M, Al-Najjar Y, Sarkar A et al. The effect of microbiome-modulating probiotics, prebiotics and synbiotics on glucose homeostasis in type 2 diabetes: A systematic review, meta-analysis, and meta-regression of clinical trials. Pharmacol Res. 2022;185:106520. https://doi.org/10.1016/j.phrs.2022.106520.

57. Soltani S, Ashoori M, Dehghani F, Meshkini F, Clayton ZS, Abdollahi S. Effects of probiotic/synbiotic supplementation on body weight in patients with diabetes: a systematic review and meta-analyses of randomizedcontrolled trials. BMC Endocr Disord. 2023;23(1):86. https://doi.org/10.1186/s12902-023-01338-x.

58. Тульский АА, Мыринова ОА, Щетинина АО, Мартиросян НС, Гончарова ЕВ, Кузина ИА и др. Ассоциация между кишечной микробиотой и дисфункцией щитовидной железы. Медицинский совет. 2024;(6):240–249. https://doi.org/10.21518/ms2024-073.


Рецензия

Для цитирования:


Мыринова ОА, Тульский АА, Щетинина АО, Мартиросян НС, Кузина ИА, Гончарова ЕВ, Тельнова МЭ, Эльмурзаева ЭА, Петунина НА. Изменение состава кишечной микробиоты у пациентов с предиабетом и сахарным диабетом 2-го типа. Медицинский Совет. 2025;(6):48-59. https://doi.org/10.21518/ms2025-032

For citation:


Myrinova OA, Tulsky AA, Shchetinina AO, Martirosian NS, Kuzina IA, Goncharova EV, Telnova ME, Elmurzaeva EA, Petunina NA. Alteration of gut microbiota composition in patients with prediabetes and type 2 diabetes mellitus. Meditsinskiy sovet = Medical Council. 2025;(6):48-59. (In Russ.) https://doi.org/10.21518/ms2025-032

Просмотров: 76


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)