Preview

Медицинский Совет

Расширенный поиск

Значение полногеномных исследований ассоциаций и генетических шкал риска для прогнозирования развития сахарного диабета 2-го типа, его осложнений и фармакогенетики

https://doi.org/10.21518/ms2025-187

Аннотация

Сахарный диабет (СД) 2-го типа – комплексное наследственное метаболическое расстройство, характеризующееся нарушением регуляции гомеостаза глюкозы, возникающим из-за снижения секреции инсулина и/или развития резистентности тканей к инсулину. Полногеномные исследования ассоциаций (GWAS) успешно выявили сотни генетических локусов, связанных с риском развития СД 2-го типа, что свидетельствует о вовлечении многочисленных генов в его патогенез. Оценка генетических рисков может помочь в прогнозировании развития заболевания и выделении групп риска, в которых возможно более прицельное проведение профилактических мероприятий, включающих изменение образа жизни. Кроме того, выявление пациентов с высоким риском развития СД 2-го типа позволит проводить более раннюю диагностику и эффективное лечение на этапе минимальных нарушений углеводного обмена. Расширение знаний о патогенезе заболевания на основе знаний о функциях, ассоциированных с СД 2-го типа генов, может помочь в разработке новых лекарственных препаратов для контроля углеводного обмена. В перспективе трансляция генетических данных в клиническую практику имеет большой потенциал для индивидуализации управления СД 2-го типа в зависимости от ведущего патогенетического механизма его развития. В этом обзоре рассматриваются текущие достижения в области генетических исследований СД 2-го типа и возможности использования имеющихся данных в прецизионной медицине. Мы обсуждаем использование генетических данных для прогнозирования риска развития СД 2-го типа и его осложнений, а также перспективы оценки индивидуального ответа на медикаментозную терапию и изменение образа жизни.

Об авторах

Т. Ю. Демидова
Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
Россия

Демидова Татьяна Юльевна, д.м.н., профессор, заведующая кафедрой эндокринологии Института клинической медицины

117997, Россия, Москва, ул. Островитянова, д. 1 



В. В. Титова
Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
Россия

Титова Виктория Викторовна, ассистент кафедры эндокринологии лечебного факультета 

117997, Россия, Москва, ул. Островитянова, д. 1 



Список литературы

1. Meigs JB. The Genetic Epidemiology of Type 2 Diabetes: Opportunities for Health Translation. Curr Diab Rep. 2019;19(8):62. https://doi.org/10.1007/s11892-019-1173-y.

2. Morris AP. Progress in defining the genetic contribution to type 2 diabetes susceptibility. Curr Opin Genet Dev. 2018;50:41–51. https://doi.org/10.1016/j.gde.2018.02.003.

3. Демидова ТЮ, Плахотняя ВМ. Возможные направления клинического применения знаний о генетике сахарного диабета 2-го типа. Медицинский совет. 2022;(10):46–56. https://doi.org/10.21518/2079-701X-2022-16-10-46-56.

4. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38(3):320–323. https://doi.org/10.1038/ng1732.

5. Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J et al. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet. 2000;26(1):76–80. https://doi.org/10.1038/79216.

6. Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G et al. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes. 2003;52(2):568–572. https://doi.org/10.2337/diabetes.52.2.568.

7. Sandhu MS, Weedon MN, Fawcett KA, Wasson J, Debenham SL, Daly A et al. Common variants in WFS1 confer risk of type 2 diabetes. Nat Genet. 2007;39(8):951–953. https://doi.org/10.1038/ng2067.

8. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445(7130):881–885. https://doi.org/10.1038/nature05616.

9. Авзалетдинова ДШ, Моругова ТВ, Шарипова ЛФ, Кочетова ОВ. Ассоциация полиморфных локусов предрасположенности к сахарному диабету 2 типа в различных этнических группах Российской Федерации. Сахарный диабет. 2021;24(3):262–272. https://doi.org/10.14341/DM12531.

10. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316(5829):1336–1341. https://doi.org/10.1126/science.1142364.

11. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889–894. https://doi.org/10.1126/science.1141634.

12. Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW et al. Fine-mapping type 2 diabetes loci to single-variant resolution using highdensity imputation and islet-specific epigenome maps. Nat Genet. 2018;50(11):1505–1513. https://doi.org/10.1038/s41588-018-0241-6.

13. DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium; Asian Genetic Epidemiology Network Type 2 Diabetes (AGEN-T2D) Consortium; South Asian Type 2 Diabetes (SAT2D) Consortium; Genomewide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014;46(3):234–244. https://doi.org/10.1038/ng.2897.

14. Vujkovic M, Keaton JM, Lynch JA, Miller DR, Zhou J, Tcheandjieu C et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat Genet. 2020;52(7):680–691. https://doi.org/10.1038/s41588-020-0637-y.

15. Mahajan A, Spracklen CN, Zhang W, Ng MCY, Petty LE, Kitajima H et al. Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat Genet. 2022;54(5):560–572. https://doi.org/10.1038/s41588-022-01058-3.

16. Suzuki K, Hatzikotoulas K, Southam L, Taylor HJ, Yin X, Lorenz KM et al. Multi-ancestry genome-wide study in >2.5 million individuals reveals heterogeneity in mechanistic pathways of type 2 diabetes and complications. Preprint. medRxiv. 2023;2023.03.31.23287839. https://doi.org/10.1101/2023.03.31.23287839.

17. Florez JC, Jablonski KA, Bayley N, Pollin TI, de Bakker PI, Shuldiner AR et al. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N Engl J Med. 2006;355(3):241–250. https://doi.org/10.1056/NEJMoa062418.

18. Ng HJ, Gloyn AL. Bridging the gap between genetic associations and molecular mechanisms for type 2 diabetes. Curr Diab Rep. 2013;13(6):778–785. https://doi.org/10.1007/s11892-013-0429-1.

19. Udler MS, McCarthy MI, Florez JC, Mahajan A. Genetic Risk Scores for Diabetes Diagnosis and Precision Medicine. Endocr Rev. 2019;40(6):1500–1520. https://doi.org/10.1210/er.2019-00088.

20. Sayed S, Nabi AHMN. Diabetes and Genetics: A Relationship Between Genetic Risk Alleles, Clinical Phenotypes and Therapeutic Approaches. Adv Exp Med Biol. 2021;1307:457–498. https://doi.org/10.1007/5584_2020_518.

21. DeForest N, Majithia AR. Genetics of Type 2 Diabetes: Implications from Large-Scale Studies. Curr Diab Rep. 2022;22(5):227–235. https://doi.org/10.1007/s11892-022-01462-3.

22. Imamura M, Shigemizu D, Tsunoda T, Iwata M, Maegawa H, Watada H et al. Assessing the clinical utility of a genetic risk score constructed using 49 susceptibility alleles for type 2 diabetes in a Japanese population. J Clin Endocrinol Metab. 2013;98(10):E1667–E1673. https://doi.org/10.1210/jc.2013-1642.

23. Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018;50(9):1219–1224. https://doi.org/10.1038/s41588-018-0183-z.

24. Wareham NJ. Personalised prevention of type 2 diabetes. Diabetologia. 2022;65(11):1796–1803. https://doi.org/10.1007/s00125-022-05774-7.

25. Portero McLellan KC, Wyne K, Villagomez ET, Hsueh WA. Therapeutic interventions to reduce the risk of progression from prediabetes to type 2 diabetes mellitus. Ther Clin Risk Manag. 2014;10:173–188. https://doi.org/10.2147/tcrm.s39564.

26. Salem RM, Todd JN, Sandholm N, Cole JB, Chen WM, Andrews D et al. Genome-Wide Association Study of Diabetic Kidney Disease Highlights Biology Involved in Glomerular Basement Membrane Collagen. J Am Soc Nephrol. 2019;30(10):2000–2016. https://doi.org/10.1681/asn.2019030218.

27. van Zuydam NR, Ahlqvist E, Sandholm N, Deshmukh H, Rayner NW, Abdalla M et al. A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes. Diabetes. 2018;67(7):1414–1427. https://doi.org/10.2337/db17-0914.

28. Teumer A, Li Y, Ghasemi S, Prins BP, Wuttke M, Hermle T et al. Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria. Nat Commun. 2019;10(1):4130. https://doi.org/10.1038/s41467-019-11576-0.

29. Pattaro C, Teumer A, Gorski M, Chu AY, Li M, Mijatovic V et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat Commun. 2016;7:10023. https://doi.org/10.1038/ncomms10023.

30. Burdon KP, Fogarty RD, Shen W, Abhary S, Kaidonis G, Appukuttan B et al. Genome-wide association study for sight-threatening diabetic retinopathy reveals association with genetic variation near the GRB2 gene. Diabetologia. 2015;58:2288–2297. https://doi.org/10.1007/s00125-015-3697-2.

31. Meng W, Shah KP, Pollack S, Toppila I, Hebert HL, McCarthy MI et al. A genome-wide association study suggests new evidence for an association of the NADPH Oxidase 4 (NOX4) gene with severe diabetic retinopathy in type 2 diabetes. Acta Ophthalmol. 2018;96(7):e811–e819. https://doi.org/10.1111/aos.13769.

32. Blesneac I, Themistocleous AC, Fratter C, Conrad LJ, Ramirez JD, Cox JJ et al. Rare NaV1.7 variants associated with painful diabetic peripheral neuropathy. Pain. 2018;159(3):469–480. https://doi.org/10.1097/j.pain.0000000000001116.

33. Meng W, Veluchamy A, Hébert HL, Campbell A, Colhoun HM, Palmer CNA. A genome-wide association study suggests that MAPK14 is associated with diabetic foot ulcers. Br J Dermatol. 2017;177(6):1664–1670. https://doi.org/10.1111/bjd.15787.

34. Meng W, Deshmukh HA, Donnelly LA.; Wellcome Trust Case Control Consortium 2 (WTCCC2); Surrogate markers for Micro- and Macro-vascular hard endpoints for Innovative diabetes Tools (SUMMIT) study group; Torrance N, Colhoun HM, Palmer CN, Smith BH. A Genome-wide Association Study Provides Evidence of Sex-specific Involvement of Chr1p35.1 (ZSCAN20-TLR12P) and Chr8p23.1 (HMGB1P46) With Diabetic Neuropathic Pain. EBioMedicine. 2015;2(10):1386–1393. https://doi.org/10.1016/j.ebiom.2015.08.001.

35. Meng W, Deshmukh HA, van Zuydam NR, Liu Y, Donnelly LA, Zhou K; Wellcome Trust Case Control Consortium 2 (WTCCC2); Surrogate Markers for Micro- and Macro-Vascular Hard Endpoints for Innovative Diabetes Tools (SUMMIT) Study Group; Morris AD, Colhoun HM, Palmer CN, Smith BH. A genome-wide association study suggests an association of Chr8p21.3 (GFRA2) with diabetic neuropathic pain. Eur J Pain. 2015;19(3):392–399. https://doi.org/10.1002/ejp.560.

36. Qi L, Qi Q, Prudente S, Mendonca C, Andreozzi F, di Pietro N et al. Association between a genetic variant related to glutamic acid metabolism and coronary heart disease in individuals with type 2 diabetes. JAMA. 2013;310(8):821–828. https://doi.org/10.1001/jama.2013.276305.

37. Shah HS, Gao H, Morieri ML, Skupien J, Marvel S, Paré G et al. Genetic Predictors of Cardiovascular Mortality During Intensive Glycemic Control in Type 2 Diabetes: Findings From the ACCORD Clinical Trial. Diabetes Care. 2016;39(11):1915–1924. https://doi.org/10.2337/dc16-0285.

38. Tremblay J, Haloui M, Attaoua R, Tahir R, Hishmih C, Harvey F et al. Polygenic risk scores predict diabetes complications and their response to intensive blood pressure and glucose control. Diabetologia. 2021;64(9):2012–2025. https://doi.org/10.1007/s00125-021-05491-7.

39. Imamura M, Takahashi A, Yamauchi T, Hara K, Yasuda K, Grarup N et al. Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes. Nat Commun. 2016;7:10531. https://doi.org/10.1038/ncomms10531.

40. Syed YY. Dorzagliatin: First Approval. Drugs. 2022;82(18):1745–1750. https://doi.org/10.1007/s40265-022-01813-0.


Рецензия

Для цитирования:


Демидова ТЮ, Титова ВВ. Значение полногеномных исследований ассоциаций и генетических шкал риска для прогнозирования развития сахарного диабета 2-го типа, его осложнений и фармакогенетики. Медицинский Совет. 2025;(6):67-74. https://doi.org/10.21518/ms2025-187

For citation:


Demidova TY, Titova VV. The value of genome-wide association studies and genetic risk scales for predicting type 2 diabetes mellitus, its complications, and pharmacogenetics. Meditsinskiy sovet = Medical Council. 2025;(6):67-74. (In Russ.) https://doi.org/10.21518/ms2025-187

Просмотров: 42


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)