Preview

Meditsinskiy sovet = Medical Council

Advanced search

The role of inflammation, fibrosis, and metabolic stress in the formation and maintenance of atrial fibrillation

https://doi.org/10.21518/ms2025-031

Abstract

Atrial fibrillation (AF) is a complex disease with a multifactorial etiology, while the mechanisms of AF associated with inflammation include associated changes in electrophysiological properties, initiation of early and late post-depolarization, remodeling of the heart structure and increased fibrosis. These inflammatory factors cause the appearance of increased ectopic activity and the implementation of the mechanism of re-entry of arousal, which in turn contribute to the initiation and maintenance of AF. It has been established that inflammatory diseases of various etiologies, leading to both systemic and local inflammatory processes, are certainly associated with AF, as evidenced by a distinct increase in the levels of inflammatory markers in this arrhythmia. Fibrosis also plays a significant role in the development of AF, both through electrical and structural atrial remodeling. It promotes increased deposition of extracellular matrix proteins in the myocardial interstitium and creates a structural basis for maintaining the heterogeneity of cardiac tissue. The role of metabolic stress in the pathophysiology of the development and maintenance of AF as a result of the activation of inflammatory processes cannot be ignored. However, inflammation is multifaceted, and different types of inflammation affect the risk of AF in different ways. Moreover, inflammation seems to have a different effect on different AF variants, as well as on its duration. Thus, there is still much to be clarified in the relationship between AF and inflammation. The data reviewed in this article supports the idea that inflammation may be one of the main causes of AF occurrence and maintenance.

About the Authors

T. V. Eliseeva
Military Medical Academy named after S.M. Kirov
Russian Federation

Tatyana V. Eliseeva, Cand. Sci. (Med.), Lecturer of the First Department (Continued Education Therapy for Physicians)

6, Akademik Lebedev St., St Petersburg, 194044, Russia



V. A. Tarasov
Military Medical Academy named after S.M. Kirov
Russian Federation

Viktor A. Tarasov, Cand. Sci. (Med.), Associate Professor of the First Department (Continued Education Therapy for Physicians)

6, Akademik Lebedev St., St Petersburg, 194044, Russia



V. V. Salukhov
Military Medical Academy named after S.M. Kirov
Russian Federation

Vladimir V. Salukhov, Dr. Sci. (Med.), Professor, Head of the First Department (Continued Education Therapy for Physicians)

6, Akademik Lebedev St., St Petersburg, 194044, Russia



References

1. Kryukov EV, Cherkashin DV, Kruzhalin EE, Kutelev GG, Alanicev AE. Role of inflammation in the development of atrial fibrillation. Bulletin of the Russian Military Medical Academy. 2023;25(1):107–120. (In Russ.) https://doi.org/10.17816/brmma112458.

2. Benjamin EJ, Wolf PA, D’Agostino RB, Silbershatz H, Kannel WB, Levy D. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation. 1998;98(10):946–952. https://doi.org/10.1161/01.cir.98.10.946.

3. Di Carlo A, Zaninelli A, Mori F, Consoli D, Bellino L, Baldereschi M et al. Prevalence of Atrial Fibrillation Subtypes in Italy and Projections to 2060 for Italy and Europe. J Am Geriatr Soc. 2020;68(11):2534–2541. https://doi.org/10.1111/jgs.16748.

4. Mareev YuV, Polyakov DS, Vinogradova NG, Fomin IV, Mareev VYu, Belenkov YuN et al. Epidemiology of atrial fibrillation in a representative sample of the European part of the Russian Federation. Analysis of EPOCH-CHF study. Kardiologiya. 2022;62(4):12–19. (In Russ.) https://doi.org/10.18087/cardio.2022.4.n1997.

5. Stepanenko IA, Mirzoyan NA, Ruban AV, Sopova DI, Salukhov VV, Tarasov VA. Biomarkers of risk and prognosis in atrial fibrillation. Meditsinskiy Sovet. 2024;18(16):70–81. (In Russ.) https://doi.org/10.21518/ms2024-379.

6. Mont L, Guasch E. Atrial fibrillation progression: How sick is the atrium? Heart Rhythm. 2017;14(6):808–809. https://doi.org/10.1016/j.hrthm.2017.02.027.

7. Holmqvist F, Kim S, Steinberg BA, Reiffel JA, Mahaffey KW, Gersh BJ et al. Heart rate is associated with progression of atrial fibrillation, independent of rhythm. Heart. 2015;101(11):894–899. https://doi.org/10.1136/heartjnl-2014-307043.

8. Bunenkova GF, Salikova SP, Grinevich VB, Ivanyuk ES. Role of myeloperoxidase in atrial fibrillation and ischemic heart disease. The Clinician. 2022;16(3):18–24. (In Russ.) https://doi.org/10.17650/1818-8338-2022-16-3-K664.

9. Багненко СФ, Крюкова ЕВ (ред.). Ожирение и ассоциированные заболевания. Консервативное и хирургическое лечение: руководство для врачей. СПб.: СпецЛит; 2022. 478 с.

10. Obrezan AG, Filippov AE, Obrezan AA. A patient with atrial fibrillation and diabetes: selecting the optimal anticoagulant therapy regimen. Russian Journal of Cardiology. 2021;26(5):4508. (In Russ.) https://doi.org/10.15829/1560-4071-2021-4508.

11. Pavlov AV, Gizatulina TP, Kuznetsov VA. Electroanatomic bipolar mapping for detection of arrhythmogenic substrate in catheter ablation of atrial fibrillation. Journal of Arrhythmology. 2019;26(4):32–38. (In Russ.) https://doi.org/10.35336/VA-2019-4-32-38.

12. Hohmann C, Pfister R, Mollenhauer M, Adler C, Kozlowski J, Wodarz A et al. Inflammatory cell infiltration in left atrial appendageal tissues of patients with atrial fibrillation and sinus rhythm. Sci Rep. 2020;10(1):1685. https://doi.org/10.1038/s41598-020-58797-8.

13. Bruins P, te Velthuis H, Yazdanbakhsh AP, Jansen PG, van Hardevelt FW, de Beaumont EM et al. Activation of the complement system during and after cardiopulmonary bypass surgery: postsurgery activation involves C-reactive protein and is associated with postoperative arrhythmia. Circulation. 1997;96(10):3542–3548. https://doi.org/10.1161/01.cir.96.10.3542

14. Aviles RJ, Martin DO, Apperson-Hansen C, Houghtaling PL, Rautaharju P, Kronmal RA et al. Inflammation as a risk factor for atrial fibrillation. Circulation. 2003;108(24):3006–3010. https://doi.org/10.1161/01.CIR.0000103131.70301.4F.

15. Saito T, Tamura K, Uchida D, Saito T, Togashi M, Nitta T, Sugisaki Y. Histopathological features of the resected left atrial appendage as predictors of recurrence after surgery for atrial fibrillation in valvular heart disease. Circ J. 2007;71(1):70–78. https://doi.org/10.1253/circj.71.70.

16. Scott L Jr, Li N, Dobrev D. Role of inflammatory signaling in atrial fibrillation. Int J Cardiol. 2019;287:195–200. https://doi.org/10.1016/j.ijcard.2018.10.020.

17. Zhang G, Abuduoufu A, Zhou X, Li Y, Zhang L, Lu Y et al. Monocyte Chemoattractant Protein-1-Induced Protein in Age-Related Atrial Fibrillation and Its Association with Circulating Fibrosis Biomarkers. Cardiology. 2019;142(4):244–249. https://doi.org/10.1159/000499932.

18. Kovacs SB, Miao EA. Gasdermins: Effectors of Pyroptosis. Trends Cell Biol. 2017;27(9):673–684. https://doi.org/10.1016/j.tcb.2017.05.005.

19. Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19(8):477–489. https://doi.org/10.1038/s41577-019-0165-0.

20. Matsushita N, Ishida N, Ibi M, Saito M, Takahashi M, Taniguchi S et al. IL-1β Plays an Important Role in Pressure Overload-Induced Atrial Fibrillation in Mice. Biol Pharm Bull. 2019;42(4):543–546. https://doi.org/10.1248/bpb.b18-00363.

21. Marcus GM, Whooley MA, Glidden DV, Pawlikowska L, Zaroff JG, Olgin JE. Interleukin-6 and atrial fibrillation in patients with coronary artery disease: data from the Heart and Soul Study. Am Heart J. 2008;155(2):303–309. https://doi.org/10.1016/j.ahj.2007.09.006.

22. Liang F, Wang Y. Coronary heart disease and atrial fibrillation: a vicious cycle. Am J Physiol Heart Circ Physiol. 2021;320(1):H1–H12. https://doi.org/10.1152/ajpheart.00702.2020.

23. Liew R, Khairunnisa K, Gu Y, Tee N, Yin NO, Naylynn TM, Moe KT. Role of tumor necrosis factor-α in the pathogenesis of atrial fibrosis and development of an arrhythmogenic substrate. Circ J. 2013;77(5):1171–1179. https://doi.org/10.1253/circj.cj-12-1155.

24. Zacharia E, Papageorgiou N, Ioannou A, Siasos G, Papaioannou S, Vavuranakis M et al. Inflammatory Biomarkers in Atrial Fibrillation. Curr Med Chem. 2019;26(5):837–854. https://doi.org/10.2174/0929867324666170727103357.

25. Zhou X, Dudley SC Jr. Evidence for Inflammation as a Driver of Atrial Fibrillation. Front Cardiovasc Med. 2020;7:62. https://doi.org/10.3389/fcvm.2020.00062.

26. Frangogiannis N. Transforming growth factor-β in tissue fibrosis. J Exp Med. 2020;217(3):e20190103. https://doi.org/10.1084/jem.20190103.

27. Lodyga M, Hinz B. TGF-β1 – A truly transforming growth factor in fibrosis and immunity. Semin Cell Dev Biol. 2020;101:123–139. https://doi.org/10.1016/j.semcdb.2019.12.010.

28. Rosenberg MA, Maziarz M, Tan AY, Glazer NL, Zieman SJ, Kizer JR et al. Circulating fibrosis biomarkers and risk of atrial fibrillation: The Cardiovascular Health Study (CHS). Am Heart J. 2014;167(5):723–728.e2. https://doi.org/10.1016/j.ahj.2014.01.010.

29. Chute M, Aujla P, Jana S, Kassiri Z. The Non-Fibrillar Side of Fibrosis: Contribution of the Basement Membrane, Proteoglycans, and Glycoproteins to Myocardial Fibrosis. J Cardiovasc Dev Dis. 2019;6(4):35. https://doi.org/10.3390/jcdd6040035.

30. Nalliah CJ, Bell JR, Raaijmakers AJA, Waddell HM, Wells SP, Bernasochi GB et al. Epicardial Adipose Tissue Accumulation Confers Atrial Conduction Abnormality. J Am Coll Cardiol. 2020;76(10):1197–1211. https://doi.org/10.1016/j.jacc.2020.07.017.

31. Macheret F, Bartz TM, Djousse L, Ix JH, Mukamal KJ, Zieman SJ et al. Higher circulating adiponectin levels are associated with increased risk of atrial fibrillation in older adults. Heart. 2015;101(17):1368–1374. https://doi.org/10.1136/heartjnl-2014-307015.

32. Shaihov-Teper O, Ram E, Ballan N, Brzezinski RY, Naftali-Shani N, Masoud R et al. Extracellular Vesicles From Epicardial Fat Facilitate Atrial Fibrillation. Circulation. 2021;143(25):2475–2493. https://doi.org/10.1161/CIRCULATIONAHA.120.052009.

33. Girerd N, Scridon A, Bessière F, Chauveau S, Geloen A, Boussel L et al. Periatrial epicardial fat is associated with markers of endothelial dysfunction in patients with atrial fibrillation. PLoS ONE. 2013;8(10):e77167. https://doi.org/10.1371/journal.pone.0077167.

34. Nakamura Y, Nakamura K, Fukushima-Kusano K, Ohta K, Matsubara H, Hamuro T et al. Tissue factor expression in atrial endothelia associated with nonvalvular atrial fibrillation: possible involvement in intracardiac thrombogenesis. Thromb Res. 2003;111(3):137–142. https://doi.org/10.1016/s0049-3848(03)00405-5.

35. Hinderer S, Schenke-Layland K. Cardiac fibrosis – A short review of causes and therapeutic strategies. Adv Drug Deliv Rev. 2019;146:77–82. https://doi.org/10.1016/j.addr.2019.05.011.

36. Frangogiannis NG. Cardiac fibrosis. Cardiovasc Res. 2021;117(6):1450–1488. https://doi.org/10.1093/cvr/cvaa324.

37. Nattel S. Electrical coupling between cardiomyocytes and fibroblasts: experimental testing of a challenging and important concept. Cardiovasc Res. 2018;114(3):349–352. https://doi.org/10.1093/cvr/cvy003.

38. Hill MA, Jaisser F, Sowers JR. Role of the vascular endothelial sodium channel activation in the genesis of pathologically increased cardiovascular stiffness. Cardiovasc Res. 2022;118(1):130–140. https://doi.org/10.1093/cvr/cvaa326.

39. Halade GV, Lee DH. Inflammation and resolution signaling in cardiac repair and heart failure. EBioMedicine. 2022;79:103992. https://doi.org/10.1016/j.ebiom.2022.103992.

40. Davis J, Burr AR, Davis GF, Birnbaumer L, Molkentin JD. A TRPC6-dependent pathway for myofibroblast transdifferentiation and wound healing in vivo. Dev Cell. 2012;23(4):705–715. https://doi.org/10.1016/j.devcel.2012.08.017.

41. Gibb AA, Lazaropoulos MP, Elrod JW. Myofibroblasts and Fibrosis: Mitochondrial and Metabolic Control of Cellular Differentiation. Circ Res. 2020;127(3):427–447. https://doi.org/10.1161/CIRCRESAHA.120.316958.

42. Adam O, Lavall D, Theobald K, Hohl M, Grube M, Ameling S et al. Rac1-induced connective tissue growth factor regulates connexin 43 and N-cadherin expression in atrial fibrillation. J Am Coll Cardiol. 2010;55(5):469–480. https://doi.org/10.1016/j.jacc.2009.08.064.

43. Allessie MA, de Groot NM, Houben RP, Schotten U, Boersma E, Smeets JL, Crijns HJ. Electropathological substrate of long-standing persistent atrial fibrillation in patients with structural heart disease: longitudinal dissociation. Circ Arrhythm Electrophysiol. 2010;3(6):606–615. https://doi.org/10.1161/CIRCEP.109.910125.

44. Hansen BJ, Zhao J, Csepe TA, Moore BT, Li N, Jayne LA et al. Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts. Eur Heart J. 2015;36(35):2390–2401. https://doi.org/10.1093/eurheartj/ehv233.

45. Arrieta A, Blackwood EA, Stauffer WT, Glembotski CC. Integrating ER and Mitochondrial Proteostasis in the Healthy and Diseased Heart. Front Cardiovasc Med. 2020;6:193. https://doi.org/10.3389/fcvm.2019.00193.

46. van Wijk SW, Ramos KS, Brundel BJJM. Cardioprotective Role of Heat Shock Proteins in Atrial Fibrillation: From Mechanism of Action to Therapeutic and Diagnostic Target. Int J Mol Sci. 2021;22(1):442. https://doi.org/10.3390/ijms22010442.

47. Zhang D, Hu X, Li J, Liu J, Baks-Te Bulte L, Wiersma M et al. DNA damageinduced PARP1 activation confers cardiomyocyte dysfunction through NAD+ depletion in experimental atrial fibrillation. Nat Commun. 2019;10(1):1307. https://doi.org/10.1038/s41467-019-09014-2.

48. Marion DMSV, Lanters EAH, Ramos KS, Li J, Wiersma M, Baks-Te Bulte L et al. Evaluating Serum Heat Shock Protein Levels as Novel Biomarkers for Atrial Fibrillation. Cells. 2020;9(9):2105. https://doi.org/10.3390/cells9092105.

49. Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40(2):280–293. https://doi.org/10.1016/j.molcel.2010.09.023.

50. Yu X, Chen X, Amrute-Nayak M, Allgeyer E, Zhao A, Chenoweth H et al. MARK4 controls ischaemic heart failure through microtubule detyrosination. Nature. 2021;594(7864):560–565. https://doi.org/10.1038/s41586-021-03573-5.

51. Chen G, Guo H, Song Y, Chang H, Wang S, Zhang M, Liu C. Long non-coding RNA AK055347 is upregulated in patients with atrial fibrillation and regulates mitochondrial energy production in myocardiocytes. Mol Med Rep. 2016;14(6):5311–5317. https://doi.org/10.3892/mmr.2016.5893.

52. Launey Y, Lasocki S, Asehnoune K, Gaudriot B, Chassier C, Cinotti R et al. Impact of Low-Dose Hydrocortisone on the Incidence of Atrial Fibrillation in Patients With Septic Shock: A Propensity Score-Inverse Probability of Treatment Weighting Cohort Study. J Intensive Care Med. 2019;34(3):238–244. https://doi.org/10.1177/0885066617696847.

53. Kim YR, Nam GB, Han S, Kim SH, Kim KH, Lee S et al. Effect of Short-Term Steroid Therapy on Early Recurrence During the Blanking Period After Catheter Ablation of Atrial Fibrillation. Circ Arrhythm Electrophysiol. 2015;8(6):1366–1372. https://doi.org/10.1161/CIRCEP.115.002957.

54. Prasongsukarn K, Abel JG, Jamieson WR, Cheung A, Russell JA, Walley KR, Lichtenstein SV. The effects of steroids on the occurrence of postoperative atrial fibrillation after coronary artery bypass grafting surgery: a prospective randomized trial. J Thorac Cardiovasc Surg. 2005;130(1):93–98. https://doi.org/10.1016/j.jtcvs.2004.09.014.

55. Deftereos S, Giannopoulos G, Efremidis M, Kossyvakis C, Katsivas A, Panagopoulou V et al. Colchicine for prevention of atrial fibrillation recurrence after pulmonary vein isolation: mid-term efficacy and effect on quality of life. Heart Rhythm. 2014;11(4):620–628. https://doi.org/10.1016/j.hrthm.2014.02.002.

56. Deftereos SG, Vrachatis DA, Angelidis C, Vrettou AR, Sarri EK, Giotaki SG et al. The Role of Colchicine in Treating Postoperative and Post-catheter Ablation Atrial Fibrillation. Clin Ther. 2019;41(1):21–29. https://doi.org/10.1016/j.clinthera.2018.08.008.

57. Su JH, Luo MY, Liang N, Gong SX, Chen W, Huang WQ et al. Interleukin-6: A Novel Target for Cardio-Cerebrovascular Diseases. Front Pharmacol. 2021;12:745061. https://doi.org/10.3389/fphar.2021.745061.

58. Everett BM, Cornel JH, Lainscak M, Anker SD, Abbate A, Thuren T et al. AntiInflammatory Therapy With Canakinumab for the Prevention of Hospitalization for Heart Failure. Circulation. 2019;139(10):1289–1299. https://doi.org/10.1161/CIRCULATIONAHA.118.038010.

59. Kryukov EV, Prokofiev AB, Danko AA, Dmitriev AI, Melnikov ES, Rodina TA, Belkov SA. Possibilities of the efficiency and safety control of rivaroxaban application in patients with atrial fibrillation. Bulletin of the Russian Military Medical Academy. 2021;23(2):9–16. (In Russ.) https://doi.org/10.17816/brmma64961.


Review

For citations:


Eliseeva TV, Tarasov VA, Salukhov VV. The role of inflammation, fibrosis, and metabolic stress in the formation and maintenance of atrial fibrillation. Meditsinskiy sovet = Medical Council. 2025;(6):173-185. (In Russ.) https://doi.org/10.21518/ms2025-031

Views: 73


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)