Preview

Медицинский Совет

Расширенный поиск

Кардиотоксичность противоопухолевой химиотерапии и возможные терапевтические подходы

https://doi.org/10.21518/ms2025-141

Аннотация

В наши дни достигнуты большие успехи в лечении онкологических больных. Перманентно разрабатываются новые медицинские технологии и новые методы лечения. Наблюдается увеличение пятилетней выживаемости для большинства видов рака. Однако вместе с этими успехами возникала проблема, обусловленная кардиотоксичностью химиотерапевтических препаратов. В настоящее время точные механизмы развития кардиоваскулотоксичности при применении химиотерапевтических препаратов не известны. Существует довольно много гипотез, пытающихся объяснить данный патологический феномен. Принципиально можно выделить два механизма развития кардиотоксичности: первый обусловлен нарушением, модификацией процессов репликации, транскрипции ДНК. Второй же обусловлен избыточным образованием активных форм кислорода, истощением антиоксидантной системы, индукцией перекисного окисления липидов, ведущих к повреждению сарколеммы, развитию дисфункции митохондрий и нарушению процессов окислительного фосфорилирования. Имеется большое количество лекарственных препаратов, способных предупредить кардиотоксичность, но их эффекты варьируют и находятся в зависимости от многих факторов. В данной статье была сделана попытка обобщить патофизиологические механизмы кардиоваскулотоксичности, ассоциированные с применением химиотерапевтических препаратов. Подробно рассмотрены механизмы антрациклин-индуцированной кардиотоксичности, а также потенциальные терапевтические стратегии ее профилактики и лечения. Имеется отчетливая связь между разработкой теоретических основ и их прикладным применением. Совершенствуются методы диагностики, которые уже сегодня позволяют на ранних стадиях выявлять кардиотоксичность. Однако, несмотря на успехи в области диагностики, профилактика и лечение кардиотоксичности остается «темной материей» кардиоонкологии.

Об авторах

И. И. Гасанов
Дэрайс – СМ-клиника
Россия

Гасанов Илкин Игбал-оглы, врач-кардиолог

125130, Россия, Москва, Старопетровский проезд, д. 7а, стр. 22 



Т. Х. Темирсултанова
Дэрайс – СМ-клиника
Россия

Темирсултанова Тамара Хамзатовна, к.м.н., врач-кардиолог

125130, Россия, Москва, Старопетровский проезд, д. 7а, стр. 22



Список литературы

1. De Angelis R, Demuru E, Baili P, Troussard X, Katalinic A, Chirlaque Lopez MD et al. Complete cancer prevalence in Europe in 2020 by disease duration and country (EUROCARE-6): a populationbased study. Lancet Oncol. 2024;25(3):293–307. https://doi.org/10.1016/S1470-2045(23)00646-0.

2. Sant M, Capocaccia R, Coleman MP, Berrino F, Gatta G, Micheli A et al. Cancer survival increases in Europe, but international differences remain wide. Eur J Cancer. 2001;37(13):1659–1667. https://doi.org/10.1016/S0959-8049(01)00206-4.

3. Spetz J, Moslehi J, Sarosiek K. Radiation-Induced Cardiovascular Toxicity: Mechanisms, Prevention, and Treatment. Curr Treat Options Cardiovasc Med. 2018;20(4):31. https://doi.org/10.1007/s11936-018-0627-x.

4. Lyon AR, López-Fernández T, Couch LS, Asteggiano R, Aznar MC, Bergler-Klein J et al.2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J. 2022;43(41):4229–4361. https://doi.org/10.1093/eurheartj/ehac244.

5. Toste JC. Cardio-oncology: Understanding the different mechanisms of cardiovascular toxicity. Rev Port Cardiol. 2022;41(7):587–597. https://doi.org/10.1016/j.repc.2021.04.011.

6. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39.e14. https://doi.org/10.1016/j.echo.2014.10.003.

7. Negishi K, Negishi T, Kurosawa K, Hristova K, Popescu BA, Vinereanu D et al. Practical guidance in echocardiographic assessment of global longitudinal strain. JACC Cardiovasc Imaging. 2015;8(4):489–492. https://doi.org/10.1016/j.jcmg.2014.06.013.

8. Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131(22):1981–1988. https://doi.org/10.1161/CIRCULATIONAHA.114.013777.

9. Collier P, Phelan D, Klein A. A Test in Context: Myocardial Strain Measured by Speckle-Tracking Echocardiography. J Am Coll Cardiol. 2017;69(8):1043–1056. https://doi.org/10.1016/j.jacc.2016.12.012.

10. van der Zanden SY, Qiao X, Neefjes J. New insights into the activities and toxicities of the old anticancer drug doxorubicin. FEBS J. 2021;288(21):6095–6111. https://doi.org/10.1111/febs.15583.

11. Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S et al. Dynamics of cell generation and turnover in the human heart. Cell. 2015;161:1566–1575. https://doi.org/10.1016/j.cell.2015.05.026.

12. Bhatia S. Genetics of Anthracycline Cardiomyopathy in Cancer Survivors: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol. 2020;2(4):539–552. https://doi.org/10.1016/j.jaccao.2020.09.006.

13. Lotrionte M, Biondi-Zoccai G, Abbate A, Lanzetta G, D’Ascenzo F, Malavasi V et al. Review and meta-analysis of incidence and clinical predictors of anthracycline cardiotoxicity. Am J Cardiol. 2013;112(12):1980–1984. https://doi.org/10.1016/j.amjcard.2013.08.026.

14. Sawyer DB. Anthracyclines and heart failure. N Engl J Med. 2013;368:1154–1156. https://doi.org/10.1056/NEJMCIBR1214975.

15. Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131:1981–1988. https://doi.org/10.1161/CIRCULATIONAHA.114.013777.

16. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity andcardiotoxicity. Pharmacol Rev. 2004;56:185–229. https://doi.org/10.1124/pr.56.2.6.

17. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97(11):2869–2879. https://doi.org/10.1002/cncr.11407.

18. Zamorano JL, Lancellotti P, Muñoz DR, Aboyans V, Asteggiano R, Galderisi M et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines. Kardiol Pol. 2016;74(11):1193–1233. (In Polish) https://doi.org/10.1093/eurheartj/ehw211.

19. Von Hoff DD, Layard MW, Basa P, Davis HL, Von Hoff AL, Rozencweig M et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91(5):710–717. https://doi.org/10.7326/0003-4819- =91-5-710.

20. Chen J, Potlapalli R, Quan H, Chen L, Xie Y, Pouriyeh S et al. Exploring DNA Damage and Repair Mechanisms: A Review with Computational Insights. BioTech. 2024;13(1):3. https://doi.org/10.3390/biotech13010003.

21. Pommier Y, Nussenzweig A, Takeda S, Austin C. Human topoisomerases and their roles in genome stability and organization. Nat Rev Mol Cell Biol. 2022;23(6):407–427. https://doi.org/10.1038/s41580-022-00452-3.

22. McKie SJ, Neuman KC, Maxwell A. DNA topoisomerases: Advances in understanding of cellular roles and multi-protein complexes via structure-function analysis. Bioessays. 2021;43(4):e2000286. https://doi.org/10.1002/bies.202000286.

23. Yang F, Kemp CJ, Henikoff S. Doxorubicin enhances nucleosome turnover around promoters. Curr Biol. 2013;23(9):782–787. https://doi.org/10.1016/j.cub.2013.03.043.

24. Dadson K, Calvillo-Arguelles O, Thavendiranathan P, Billia F. Anthracyclineinduced cardiomyopathy: cellular and molecular mechanisms. Clin Sci. 2020;134(13):1859–1885. https://doi.org/10.1042/CS20190653.

25. Lyu YL, Kerrigan JE, Lin CP, Azarova AM, Tsai YC, Ban Y, Liu LF. Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 2007;67(18):8839–8846. https://doi.org/10.1158/0008-5472.CAN-07-1649.

26. Hasinoff BB, Patel D, Wu X. The Role of Topoisomerase IIβ in the Mechanisms of Action of the Doxorubicin Cardioprotective Agent Dexrazoxane. Cardiovasc Toxicol. 2020;20(3):312–320. https://doi.org/10.1007/s12012-019-09554-5.

27. Deng S, Yan T, Jendrny C, Nemecek A, Vincetic M, Gödtel-Armbrust U, Wojnowski L. Dexrazoxane may prevent doxorubicin-induced DNA damage via depleting both topoisomerase II isoforms. BMC Cancer. 2014;14:842. https://doi.org/10.1186/1471-2407-14-842.

28. Hasinoff BB, Patel D. The iron chelator Dp44mT does not protect myocytes against doxorubicin. J Inorg Biochem. 2009;103(7):1093–1101. https://doi.org/10.1016/j.jinorgbio.2009.05.007.

29. Hasinoff BB, Patel D, Wu X. The oral iron chelator ICL670A (deferasirox) does not protect myocytes against doxorubicin. Free Radic Biol Med. 2003;35(11):1469–1479. https://doi.org/10.1016/j.freeradbiomed.2003.08.005.

30. Popelová O, Sterba M, Simůnek T, Mazurová Y, Guncová I, Hroch M et al. Deferiprone does not protect against chronic anthracycline cardiotoxicity in vivo. J Pharmacol Exp Ther. 2008;326(1):259–269. https://doi.org/10.1124/jpet.108.137604.

31. Elihu N, Anandasbapathy S, Frishman WH. Chelation therapy in cardiovascular disease: ethylenediaminetetraacetic acid, deferoxamine, and dexrazoxane. J Clin Pharmacol. 1998;38(2):101–105. https://doi.org/10.1002/j.1552-4604.1998.tb04397.x.

32. Fabiani I, Aimo A, Grigoratos C, Castiglione V, Gentile F, Saccaro LF et al. Oxidative stress and inflammation: determinants of anthracycline cardiotoxicity and possible therapeutic targets. Heart Fail Rev. 2021;26(4):881–890. https://doi.org/10.1007/s10741-020-10063-9.

33. Chen Y, Jungsuwadee P, Vore M, Butterfield DA, St Clair DK. Collateral damage in cancer chemotherapy: oxidative stress in nontargeted tissues. Mol Interv. 2007;7(3):147–156. https://doi.org/10.1124/mi.7.3.6.

34. Murphy E, Ardehali H, Balaban RS, DiLisa F, Dorn GW, Kitsis RN et al. Mitochondrial function, biology, and role in disease: a scientific statement from the american heart association. Circ Res. 2016;118(12):1960–1991. https://doi.org/10.1161/RES.0000000000000104.

35. Aon MA, Cortassa S. Mitochondrial network energetics in the heart. Wiley Interdiscip Rev Syst Biol Med. 2012;4(6):599–613. https://doi.org/10.1002/wsbm.1188.

36. Gorini S, De Angelis A, Berrino L, Malara N, Rosano G, Ferraro E. Chemotherapeutic drugs and mitochondrial dysfunction: focus on doxorubicin, trastuzumab, and sunitinib. Oxid Med Cell Longev. 2018;2018:7582730. https://doi.org/10.1155/2018/7582730.

37. Cappetta D, De Angelis A, Sapio L, Prezioso L, Illiano M, Quaini F et al. Oxidative stress and cellular response to doxorubicin: a common factor in the complex milieu of anthracycline cardiotoxicity. Oxid Med Cell Longev. 2017;2017:1521020. https://doi.org/10.1155/2017/1521020.

38. Keizer HG, Pinedo HM, Schuurhuis GJ, Joenje H. Doxorubicin (adriamycin): a critical review of free radical-dependent mechanisms of cytotoxicity. Pharmacol Ther. 1990;47(2):219–231. https://doi.org/10.1016/0163-7258(90)90088-j.

39. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of nonapoptotic cell death pathways. Nat Rev Mol Cell Biol. 2014;15(2):135–147. https://doi.org/10.1038/nrm3737.

40. Yang WS, Stockwell BR. Ferroptosis: Death by Lipid Peroxidation. Trends Cell Biol. 2016;26(3):165–176. https://doi.org/10.1016/j.tcb.2015.10.014.

41. Qin Y, Guo T, Wang Z, Zhao Y. The role of iron in doxorubicin-induced cardiotoxicity: recent advances and implication for drug delivery. J Mater Chem B. 2021;9(24):4793–4803. https://doi.org/10.1039/d1tb00551k.

42. Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV et al. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest. 2014;124(2):617–630. https://doi.org/10.1172/JCI72931.

43. Zhao L, Zhang B. Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes. Sci Rep. 2017;7:44735. https://doi.org/10.1038/srep44735.

44. Khafaga AF, El-Sayed YS. All-trans-retinoic acid ameliorates doxorubicininduced cardiotoxicity: in vivo potential involvement of oxidative stress, inflammation, and apoptosis via caspase-3 and p53 down-expression. Naunyn Schmiedebergs Arch Pharmacol. 2018;391(1):59–70. https://doi.org/10.1007/s00210-017-1437-5.

45. Lane DP, Benchimol S. p53: oncogene or anti-oncogene? Genes Dev. 1990;4(1):1–8. https://doi.org/10.1101/gad.4.1.1.

46. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science. 1991;253(5015):49–53. https://doi.org/10.1126/science.1905840.

47. McSweeney KM, Bozza WP, Alterovitz W-L, Zhang B. Transcriptomic profiling reveals p53 as a key regulator of doxorubicin-induced cardiotoxicity. Cell Death Discov. 2019;5:102. https://doi.org/10.1038/s41419-021-03614-x.

48. Marchenko ND, Zaika A, Moll UM. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem. 2000;275(21):16202–16212. https://doi.org/10.1074/jbc.275.21.16202.

49. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 2005;434:652–658. https://doi.org/10.1038/nature03317.

50. Baumann K. Cell death: multitasking p53 promotes necrosis. Nat Rev Mol Cell Biol. 2012;13(8):480–481. https://doi.org/10.1038/nrm3401.

51. Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell. 2012;149(7):1536–1548. https://doi.org/10.1016/j.cell.2012.05.014.

52. Li J, Wang P-Y, Long NA, Zhuang J, Springer DA, Zou J et al. p53 prevents doxorubicin cardiotoxicity independently of its prototypical tumor suppressor activities. Proc Natl Acad Sci USA. 2019;116(39):19626–19634. https://doi.org/10.1073/pnas.1904979116.

53. Nishi M, Wang P-Y, Hwang PM. Protective role of p53 in doxorubicininduced cardiomyopathy as a mitochondrial disease. Mol Cell Oncol. 2020;7(3):1724598. https://doi.org/10.1080/23723556.2020.1724598.

54. Gambardella J, Trimarco B, Iaccarino G, Sorriento D. Cardiac nonmyocyte cell functions and crosstalks in response to cardiotoxic drugs. Oxid Med Cell Longev. 2017;2017:1089359. https://doi.org/10.1155/201.

55. Cannizzaro MT, Inserra MC, Passaniti G, Celona A, D’Angelo T, Romeo P, Basile A. Role of advanced cardiovascular imaging in chemotherapyinduced cardiotoxicity. Heliyon. 2023;9(4):e15226. https://doi.org/10.1016/j.heliyon.2023.e15226.

56. Seicean S, Seicean A, Alan N, Plana JC, Budd GT, Marwick TH. Cardioprotective effect of β-adrenoceptor blockade in patients with breast cancer undergoing chemotherapy: follow-up study of heart failure. Circ Heart Fail. 2013;6(3):420–426. https://doi.org/10.1161/CIRCHEARTFAILURE.112.000055.

57. Pituskin E, Mackey JR, Koshman S, Jassal D, Pitz M, Haykowsky MJ et al. Multidisciplinary approach to novel therapies in cardio-oncology research (MANTICORE 101-breast): a randomized trial for the prevention of trastuzumab-associated cardiotoxicity. J Clin Oncol. 2017;35(8):870–877. https://doi.org/10.1200/JCO.2016.68.7830.

58. Georgakopoulos P, Roussou P, Matsakas E, Karavidas A, Anagnostopoulos N, Marinakis T et al. Cardioprotective effect of metoprolol and enalapril in doxorubicin-treated lymphoma patients: a prospective, parallel-group, randomized, controlled study with 36-month follow-up. Am J Hematol. 2010;85(11):894–896. https://doi.org/10.1002/ajh.21840.

59. Spallarossa P, Garibaldi S, Altieri P, Fabbi P, Manca V, Nasti S et al. Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol. 2004;37(4):837–846. https://doi.org/10.1016/j.yjmcc.2004.05.024.

60. Santos DL, Moreno AJM, Leino RL, Froberg MK, Wallace KB. Carvedilol protects against doxorubicin-induced mitochondrial cardiomyopathy. Toxicol Appl Pharmacol. 2002;185(3):218–227. https://doi.org/10.1006/taap.2002.9532.

61. Mohamed EA, Kassem HH. Protective effect of nebivolol on doxorubicininduced cardiotoxicity in rats. Arch Med Sci. 2018;14(6):1450–1458. https://doi.org/10.5114/aoms.2018.79008.

62. Kaya MG, Ozkan M, Gunebakmaz O, Akkaya H, Kaya EG, Akpek M et al. Protective effects of nebivolol against anthracycline-induced cardiomyopathy: a randomized control study. Int J Cardiol. 2013;167(5):2306–2310. https://doi.org/10.1016/j.ijcard.2012.06.023.

63. Rouette J, McDonald EG, Schuster T, Brophy JM, Azoulay L. Treatment and prescribing trends of antihypertensive drugs in 2.7 million UK primary care patients over 31 years: a population-based cohort study. BMJ Open. 2022;12(6):e057510. https://doi.org/10.1136/bmjopen-2021-057510.

64. Sobczuk P, Czerwin ́ska M, Kleibert M, Cudnoch-Jêdrzejewska A. Anthracycline-induced cardiotoxicity and renin-angiotensin-aldosterone system-from molecular mechanisms to therapeutic applications. Heart Fail Rev. 2022;27(1):295–319. https://doi.org/10.1007/s10741-020-09977-1.

65. Ayuna A, Abidin N. The role of neurohormonal blockers in the primary prevention of acute-, early-, and late-onset anthracycline-induced cardiotoxicity. Egypt Hear J. 2020;72(1):59. https://doi.org/1186/s43044-020-00090-0.

66. Boucek RJ, Steele A, Miracle A, Atkinson J. Effects of angiotensin-converting enzyme inhibitor on delayed-onset doxorubicin-induced cardiotoxicity. Cardiovasc Toxicol. 2003;3(4):319–329. https://doi.org/10.1385/ct:3:4:319.

67. Ibrahim MA, Ashour OM, Ibrahim YF, El-Bitar HI, Gomaa W, Abdel-Rahim SR. Angiotensin-converting enzyme inhibition and angiotensin AT(1)-receptor antagonism equally improve doxorubicin-induced cardiotoxicity and nephrotoxicity. Pharmacol Res. 2009;60(5):373–381. https://doi.org/10.1016/j.phrs.2009.05.007.

68. Abd El-Aziz MA, Othman AI, Amer M, El-Missiry MA. Potential protective role of angiotensin-converting enzyme inhibitors captopril and enalapril against adriamycin-induced acute cardiac and hepatic toxicity in rats. J Appl Toxicol. 2001;21(6):469–473. https://doi.org/10.1002/jat.78.

69. Rahmanifard M, Vessal M, Noorafshan A, Karbalay-Doust S, Naseh M. The Protective Effects of Coenzyme Q10 and Lisinopril Against Doxorubicin-Induced Cardiotoxicity in Rats: A Stereological and Electrocardiogram Study. Cardiovasc Toxicol. 2021;21(11):936–946. https://doi.org/10.1007/s12012-021-09685-8.

70. Janbabai G, Nabati M, Faghihinia M, Azizi S, Borhani S, Yazdani J. Effect of Enalapril on Preventing Anthracycline-Induced Cardiomyopathy. Cardiovasc Toxicol. 2017;17(2):130–139. https://doi.org/10.1007/s12012-016-9365-z.

71. Cho DH, Lim IR, Kim JH, Kim MN, Kim YH, Park KH et al. Protective Effects of Statin and Angiotensin Receptor Blocker in a Rat Model of Doxorubicinand Trastuzumab-Induced Cardiomyopathy. J Am Soc Echocardiogr. 2020;33(10):1253–1263. https://doi.org/10.1016/j.echo.2020.05.021.

72. Majhi S, Singh L, Yasir M. Evaluation of Ameliorative Effect of Quercetin and Candesartan in Doxorubicin-Induced Cardiotoxicity. Vasc Health Risk Manag. 2022;18:857–866. https://doi.org/10.2147/VHRM.S381485.

73. Lipshultz SE, Lipsitz SR, Sallan SE, Simbre VC, Shaikh SL, Mone SM et al. Long-term enalapril therapy for left ventricular dysfunction in doxorubicin-treated survivors of childhood cancer. J Clin Oncol. 2002;20(23):4517–4522. https://doi.org/10.1200/JCO.2002.12.102.

74. Boekhout AH, Gietema JA, Milojkovic Kerklaan B, van Werkhoven ED, Altena R, Honkoop A et al. Angiotensin II-Receptor Inhibition With Candesartan to Prevent Trastuzumab-Related Cardiotoxic Effects in Patients With Early Breast Cancer: A Randomized Clinical Trial. JAMA Oncol. 2016;2(8):1030–1037. https://doi.org/10.1001/jamaoncol.2016.1726.

75. Brilla CG. Aldosterone and myocardial fibrosis in heart failure. Herz. 2000;25(3):299–306. https://doi.org/10.1007/s000590050024.

76. Buffolo F, Tetti M, Mulatero P, Monticone S. Aldosterone as a Mediator of Cardiovascular Damage. Hypertension. 2022;79(9):18991911. https://doi.org/10.1161/HYPERTENSIONAHA.122.17964.

77. Al-Hashedi EM, Abdu FA. Aldosterone Effect on Cardiac Struture and Function. Curr Cardiol Rev. 2024;20(4):60–67. https://doi.org/10.2174/011573403X281390240219063817.

78. Akpek M, Ozdogru I, Sahin O, Inanc M, Dogan A, Yazici C et al. Protective effects of spironolactone against anthracycline-induced cardiomyopathy. Eur J Heart Fail. 2015;17(1):81–89. https://doi.org/10.1002/ejhf.196.

79. Xiaoman Liu, Danlei Li, Wenhu Pi, Bin Wang, Shasha Xu, Lei Yu et al. LCZ696 protects against doxorubicin-induced cardiotoxicity by inhibiting ferroptosis via AKT/SIRT3/SOD2 signaling pathway activation. Int Immunopharmacol. 2022;113(Pt A):109379. https://doi.org/10.1016/j.intimp.2022.109379.

80. Yeh JN, Sung PH, Chiang JY, Sheu JJ, Huang CR, Chu YC et al. Early treatment with combination of SS31 and entresto effectively preserved the heart function in doxorubicin-induced dilated cardiomyopathic rat. Biomed Pharmacother. 2021;141:111886. https://doi.org/10.1016/j.biopha.2021.111886.

81. Feng Hu, Senbo Yan, Li Lin, Xiaoxia Qiu, Xinghe Lin, Weiwei Wang. Sacubitril/valsartan attenuated myocardial inflammation, fibrosis, apoptosis and promoted autophagy in doxorubicin-induced cardiotoxicity mice via regulating the AMPKα-mTORC1 signaling pathway. Mol Cell Biochem. 2025;480(3):1891–1908. https://doi.org/10.1007/s11010-024-05117-7.

82. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S et al.; EMPA-REG OUTCOME Investigators. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117–2128. https://doi.org/10.1056/NEJMoa1504720.

83. Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M et al.; EMPEROR-Preserved Trial Investigators. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N Engl J Med. 2021;385(16):1451–1461. https://doi.org/10.1056/NEJMoa2107038.

84. Solomon SD, McMurray JJV, Claggett B, de Boer RA, DeMets D, Hernandez AF et al.; DELIVER Trial Committees and Investigators. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N Engl J Med. 2022;387(12):1089–1098. https://doi.org/10.1056/NEJMoa2206286.

85. Quagliariello V, De Laurentiis M, Rea D, Barbieri A, Monti MG, Carbone A et al. The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc Diabetol. 2021;20(1):150. https://doi.org/10.1186/s12933-021-01346-y.

86. Medina-Hernández D, Cádiz L, Mastrangelo A, Moreno-Arciniegas A, Fernández Tocino M, Cueto Becerra AA et al. SGLT2i Therapy Prevents Anthracycline-Induced Cardiotoxicity in a Large Animal Model by Preserving Myocardial Energetics. JACC CardioOncol. 2025;7(2):171–184. https://doi.org/10.1016/j.jaccao.2024.12.004.

87. Sabatino J, De Rosa S, Tammè L, Iaconetti C, Sorrentino S, Polimeni A et al. Empagliflozin prevents doxorubicin-induced myocardial dysfunction. Cardiovasc Diabetol. 2020;19(1):66. https://doi.org/10.1186/s12933-020-01040-5.

88. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur Heart J. 2020;41(1):111–188. https://doi.org/10.1093/eurheartj/ehz455.

89. Morofuji Y, Nakagawa S, Ujifuku K, Fujimoto T, Otsuka K, Niwa M, Tsutsumi K. Beyond Lipid-Lowering: Effects of Statins on Cardiovascular and Cerebrovascular Diseases and Cancer. Pharmaceuticals. 2022;15(2):151. https://doi.org/10.3390/ph15020151.

90. Ahmadi M, Amiri S, Pecic S, Machaj F, Rosik J, Łos MJ et al. Pleiotropic effects of statins: A focus on cancer. Biochim Biophys Acta Mol Basis Dis. 2020;1866(12):165968. https://doi.org/10.1016/j.bbadis.2020.165968.

91. Acar Z, Kale A, Turgut M, Demircan S, Durna K, Demir S et al. Efficiency of atorvastatin in the protection of anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2011;58(9):988–989. https://doi.org/10.1016/J.JACC.2011.05.025.

92. Chotenimitkhun R, D’Agostino R, Lawrence JA, Hamilton CA, Jordan JH, Vasu S et al. Chronic statin administration may attenuate early anthracyclineassociated declines in left ventricular ejection function. Can J Cardiol. 2015;31(3):302–307. https://doi.org/10.1016/j.cjca.2014.11.020.

93. Gammella E, Maccarinelli F, Buratti P, Recalcati S, Cairo G. The role of iron in anthracycline cardiotoxicity. Front Pharmacol. 2014;5:25. https://doi.org/10.3389/fphar.2014.00025.

94. Macedo AVS, Hajjar LA, Lyon AR, Nascimento BR, Putzu A, Rossi L et al. Efficacy of dexrazoxane in preventing anthracycline cardiotoxicity in breast cancer. JACC CardioOncol. 2019;1(1):68–79. https://doi.org/10.1016/j.jaccao.2019.08.003.

95. Jirkovský E, Jirkovská A, Bavlovič-Piskáčková H, Skalická V, Pokorná Z, Karabanovich G et al. Clinically Translatable Prevention of Anthracycline Cardiotoxicity by Dexrazoxane Is Mediated by Topoisomerase II Beta and Not Metal Chelation. Circ Heart Fail. 2021;14(11):e008209. https://doi.org/10.1161/CIRCHEARTFAILURE.120.008209.

96. Tacyildiz N, Turker N, Ucar T, Incesoy Ozdemir S, Dincaslan H, Ortakoylu MY et al. Protective effect of the dexrazoxane against cardiotoxicity of the anthracycline in the treatment of the childhood cancers. J Clin Oncol. 2023;41(16 Suppl.):e22001–e22001. https://doi.org/10.1200/JCO.2023.41.16_suppl.e22001.

97. Varga ZV, Ferdinandy P, Liaudet L, Pacher P. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am J Physiol Heart Circ Physiol. 2015;309(9):H1453-67. https://doi.org/10.1152/ajpheart.00554.2015.

98. Davies KJA, Doroshow JH. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J Biol Chem. 1986;261(7):3060–3067. https://doi.org/10.1016/s0021-9258(17)35746-0.

99. Doroshow JH, Davies KJ. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. J Biol Chem. 1986;261(7):3068–3074. https://doi.org/10.1016/S0021-9258(17)35747-2.

100. Tang Z, Zhang Z, Wang J, Sun Z, Qaed E, Chi X et al. Protective effects of phosphocreatine on human vascular endothelial cells against hydrogen peroxide-induced apoptosis and in the hyperlipidemic rat model. Chem Biol Interact. 2023;383:110683. https://doi.org/10.1016/j.cbi.2023.110683.

101. Ahsan A, Han G, Pan J, Liu S, Padhiar AA, Chu P et al. Phosphocreatine protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by modulating the PI3K/Akt/eNOS pathway. Apoptosis. 2015;20(12):1563–1576. https://doi.org/10.1007/s10495-015-1175-4.

102. Landoni G, Zangrillo A, Lomivorotov VV, Likhvantsev V, Ma J, De Simone F, Fominskiy E. Cardiac protection with phosphocreatine: a meta-analysis. Interact Cardiovasc Thorac Surg. 2016;23(4):637–646. https://doi.org/10.1093/icvts/ivw171.

103. Grazioli I, Sttrumia E. Multicenter controlled study of creatine phosphate in the treatment of heart failure. G Ital Ric Clin Ter. 1989;10:39–45. https://doi.org/10.1016/S0011-393X(05)80478-3.

104. Wang C, Hu L, Guo S, Yao Q, Liu X, Zhang B et al. Phosphocreatine attenuates doxorubicin-induced cardiotoxicity by inhibiting oxidative stress and activating TAK1 to promote myocardial survival in vivo and in vitro. Toxicology. 2021;460:152881. https://doi.org/10.1016/j.tox.2021.152881.

105. Qaed E, Almoiliqy M, Liu W, Al-Mashriqi HS, Alyafeai E, Aldahmash W et al. Protective effects of phosphocreatine against Doxorubicin-Induced cardiotoxicity through mitochondrial function enhancement and apoptosis suppression via AMPK/PGC-1α signaling pathway. Int Immunopharmacol. 2025;144:113677. https://doi.org/10.1016/j.intimp.2024.113677.

106. Vrints C, Andreotti F, Koskinas KC, Rossello X, Adamo M, Ainslie J et al. 2024 ESC Guidelines for the management of chronic coronary syndromes. Eur Heart J. 2024;45(36):3415–3537. https://doi.org/10.1093/eurheartj/ehae177.

107. Sikandar A, Farhat K, Afzal A, Ajmal K, Laeeq M, Khokhar A. Protective Effects Of Trimetazidine Against Doxorubicin-Induced Cardiotoxicity And Hepatotoxicity In Mice. J Ayub Med Coll Abbottabad. 2020;32(3):304–309. Available at: https://pubmed.ncbi.nlm.nih.gov/32829541.

108. Perletti G, Monti E, Paracchini L, Piccinini F. Effect of trimetazidine on early and delayed doxorubicin myocardial toxicity. Arch Int Pharmacodyn Ther. 1989:302:280–289. Available at: https://pubmed.ncbi.nlm.nih.gov/2636823.


Рецензия

Для цитирования:


Гасанов ИИ, Темирсултанова ТХ. Кардиотоксичность противоопухолевой химиотерапии и возможные терапевтические подходы. Медицинский Совет. 2025;(6):201-213. https://doi.org/10.21518/ms2025-141

For citation:


Gasanow II, Temirsyltanova TK. Cardiotoxicity of anticancer chemotherapy and possible therapeutic approaches. Meditsinskiy sovet = Medical Council. 2025;(6):201-213. (In Russ.) https://doi.org/10.21518/ms2025-141

Просмотров: 104


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)