Criteria for early diagnosis of myocardial perfusion disorders in asymptomatic patients with myocardial bridges
https://doi.org/10.21518/ms2025-025
Abstract
Introduction. Myocardial bridges (MBs) are the most common congenital anomaly of coronary arteries development, mainly affecting the left anterior descending (LAD) artery.
Аim. To develop criteria for early diagnosis of myocardial perfusion disorders in asymptomatic patients with MBs of the LAD artery.
Materials and methods. The study was conducted in several stages. At the first stage, 811 coronary computed tomography (CT) angiography reports were analyzed to identify patients with MBs of the LAD artery and to assess their anatomical and topographic features. At the second stage, 20 medical histories of patients with MBs of the LAD artery (main group) and 20 medical histories of patients without MBs (comparison group) were analyzed to assess the clinical significance of MBs. At the third stage, 20 patients with asymptomatic MBs of the LAD artery (main group) and 20 patients without MBs (comparison group) were examined, who underwent stress CT myocardial perfusion and speckle tracking echocardiography (STE) to assess the effectiveness of these methods of the early diagnosis of myocardial perfusion disorders in patients with MBs. Based on the obtained results, criteria for early myocardial perfusion disorders in asymptomatic patients with MBs of the LAD artery were developed.
Results. Clinical and laboratory parameters: (male gender, age < 60 years, dyslipidemia) and instrumental data: 1) 24-hour Holter monitoring: supraventricular and ventricular heart arrhythmias, silent myocardial ischemia (more than 1 min); 2) treadmill test (bicycle ergometry): ST segment depression or elevation in leads V1–2, the Duke Treadmill Score ≤ -1 point; 3) echocardiography: E/A ≤ 1, e’mean ≤ 8.5 cm/sec, E/e’mean ≥ 9; 4) STE: global longitudinal peak strain of the left ventricle ≤ -20.55%.
Conclusions. The developed criteria allow to suspect the presence of myocardial perfusion disorders in asymptomatic patients with MBs of the LAD artery, for confirmation of which it is necessary to perform imaging methods of investigation, in particular, stress CT myocardial perfusion.
About the Authors
N. T. MirzoevRussian Federation
Nikita T. Mirzoev, Adjunct of the Department of Naval Therapy
6, Akademik Lebedev St., St Petersburg, 194044, Russia
K. S. Shulenin
Russian Federation
Konstantin S. Shulenin, Dr. Sci. (Med.), Associate Professor, Deputy Head of the Department of Naval Therapy
6, Akademik Lebedev St., St Petersburg, 194044, Russia
G. G. Kutelev
Russian Federation
Gennady G. Kutelev, Dr. Sci. (Med.), Professor of the Department of Naval Therapy
6, Akademik Lebedev St., St Petersburg, 194044, Russia
D. V. Cherkashin
Russian Federation
Dmitriy V. Cherkashin, Dr. Sci. (Med.), Professor, Honored Doctor of the Russian Federation, Head of the Department of Naval Therapy
6, Akademik Lebedev St., St Petersburg, 194044, Russia
T. G. Tedeev
Russian Federation
Tamerlan G. Tedeev, Cardiologist of the Cardiology Center
1, Novyy Settlement, Krasnogorsk, 143420, Russia
M. S. Tyuryupov
Russian Federation
Mark S. Tyuryupov, Therapist of the Therapeutic Department
63, Suvorovsky Ave., St Petersburg, 191124, Russia
References
1. Sara JDS, Corban MT, Prasad M, Prasad A, Gulati R, Lerman LO, Lerman A. Prevalence of myocardial bridging associated with coronary endothelial dysfunction in patients with chest pain and non-obstructive coronary artery disease. EuroIntervention. 2020;15(14):1262–1268. https://doi.org/10.4244/EIJ-D-18-00920.
2. Izmozherova NV, Dmitriev VK, Bakhtin VM, Popov AA. Role of myocardial bridgings in acute coronary syndrome genesis in patients under 65 years old. Therapy. 2024;10(4):50–58. (In Russ.) https://doi.org/10.18565/therapy.2024.4.50-58.
3. Hostiuc S, Negoi I, Rusu MC, Hostiuc M. Myocardial Bridging: A MetaAnalysis of Prevalence. J Forensic Sci. 2018;63(4):1176–1185. https://doi.org/10.1111/1556-4029.13665.
4. Roberts W, Charles SM, Ang C, Holda MK, Walocha J, Lachman N et al. Myocardial bridges: A meta-analysis. Clin Anat. 2021;34(5):685–709. https://doi.org/10.1002/ca.23697.
5. Solov’yeva AV, Gurbanova AA, Maksimtsev IA, Lazareva OYu, Maksimtseva EA. Role of Myocardial Bridging in Myocardial Ischemia: Case Report. I.P. Pavlov Russian Medical Biological Herald. 2023;31(1):137–146. (In Russ.) https://doi.org/10.17816/PAVLOVJ109080.
6. Melnikov NN, Davydov AV, Romanenko DA, Martirosyan ME, Yaroslavskaya EI. Myocardial bridge of the right coronary artery. Creative Cardiology. 2024;18(2):255–261. (In Russ.) https://doi.org/10.24022/1997-3187-2024-18-2-255-261.
7. Sandodze TS, Azarov AV, Asadov DA, Guilmisarian KV, Semitko SP, Tsereteli NV, Iosseliani DG. Eventual role of myocardial muscular «bridges» in the pathogenesis of acute coronary syndrome. Siberian Scientific Medical Journal. 2020;40(5):84–91. (In Russ.) https://doi.org/10.15372/SSMJ20200510.
8. Mustafin TI, Shchekin SV, Shchekin VS. The case of the acute myocardial infarction at the congenital anomaly of the heart – the myocardial bridge. Morfologicheskie Vedomosti. 2020;28(4):73–77. (In Russ.) https://doi.org/10.20340/mv-mn.2020.28(4):419.
9. Chepurnenko SA, Shavkuta GV, Nasytko AD. Myocardial bridging: non-invasive diagnostics and management. Cardiovascular Therapy and Prevention (Russian Federation). 2020;19(6):2418. (In Russ.) https://doi.org/10.15829/1728-8800-2020-2418.
10. Davydov DV, Fursov AN, Potekhin NP, Chernov SA, Kranin DL, Mailer KS et al. Myocardial muscle bridges: state of the problem and clinical observation. Military Medical Journal. 2022;343(3):24–28. (In Russ.) https://doi.org/10.52424/00269050_2022_343_3_24.
11. Mirzoev NT, Shulenin KS, Kutelev GG, Cherkashin DV, Ivanov VV, Menkov IA. The current state of the problem of myocardial bridges. Translational Medicine. 2022;9(5):20–32. (In Russ.) https://doi.org/10.18705/2311-4495-2022-9-5-20-32.
12. Chatzizisis YS, Giannoglou GD. Myocardial bridges are free from atherosclerosis: Overview of the underlying mechanisms. Can J Cardiol. 2009;25(4):219–222. https://doi.org/10.1016/s0828-282x(09)70065-0.
13. Aparci M, Ozturk C, Balta S, Okutucu S, Isilak Z. Hypercholesterolemia is Accounted for Atherosclerosis at the Proximal Arterial Segments of Myocardial Bridging: A Pilot Study. Clin Appl Thromb Hemost. 2016;22(3):297–302. https://doi.org/10.1177/1076029614554995.
14. De Ornelas B, Sucato V, Vadalà G, Buono A, Galassi AR. Myocardial Bridge and Atherosclerosis, an Intimal Relationship. Curr Atheroscler Rep. 2024;26(8):353–366. https://doi.org/10.1007/s11883-024-01219-1.
15. Uusitalo V, Saraste A, Pietilä M, Kajander S, Bax JJ, Knuuti J. The Functional Effects of Intramural Course of Coronary Arteries and its Relation to Coronary Atherosclerosis. JACC Cardiovasc Imaging. 2015;8(6):697–704. https://doi.org/10.1016/j.jcmg.2015.04.001.
16. Boсkeria LA, Makarenko VN, Kurbanova BG. Myocardial bridges: optimization of diagnostic approaches. Role of multispiral computed tomography. Clinical Physiology of Circulation. 2022;19(3):221–230. (In Russ.) https://doi.org/10.24022/1814-6910-2022-19-3-221-230.
17. Berdibekov BS, Aleksandrova SA, Bulaeva NI, Golukhova EZ. Multislice computed tomography in the diagnosis of myocardial bridges. Creative Cardiology. 2022;16(4):455–469. (In Russ.) https://doi.org/10.24022/1997-3187-2022-16-4-455-469.
18. Mirzoev NT, Shulenin KS, Kutelev GG, Cherkashin DV, Makiev RG. Prevalence, anatomic-topographic features and clinical significance of myocardial bridges: a retrospective study. Doctor.Ru. 2023;22(8):17–22. (In Russ.) https://doi.org/10.31550/1727-2378-2023-22-8-17-22.
19. Zhang M, Yang J, Ma C, Liu M. Longitudinal strain measured by two-dimensional speckle tracking echocardiography to evaluate left ventricular function in patients with myocardial bridging of the left anterior descending coronary artery. Echocardiography. 2019;36(6):1066–1073. https://doi.org/10.1111/echo.14357.
20. Wang D, Sun JP, Lee AP, Ma GS, Yang XS, Yu CM et al. Evaluation of left ventricular function by three-dimensional speckle-tracking echocardiography in patients with myocardial bridging of the left anterior descending coronary artery. J Am Soc Echocardiogr. 2015;28(6):674–682. https://doi.org/10.1016/j.echo.2015.02.012.
21. Ballo H, Uusitalo V, Pietilä M, Wendelin-Saarenhovi M, Saraste M, Knuuti J, Saraste A. The effects of myocardial bridging on two-dimensional myocardial strain during dobutamine stress echocardiography. Int J Cardiovasc Imaging. 2024;40(11):2345–2355. https://doi.org/10.1007/s10554-024-03239-z.
22. Schicchi N, Fogante M, Paolini E, Cela F, Pirani PE, Perna GP. Stress-rest dynamic-CT myocardial perfusion imaging in the management of myocardial bridging: A “one-stop shop” exam. J Cardiol Cases. 2023;28(6):229–232. https://doi.org/10.1016/j.jccase.2023.08.002.
23. Mirzoev NT, Shulenin KS, Kutelev GG, Tedeev TG, Cherkashin DV, Ivanov VV. Two-dimensional speckle tracking echocardiography and stress computed tomography myocardial perfusion: potential for early imaging of asymptomatic patients with myocardial bridges. Russian Journal of Cardiology. 2024;29(7):5889. (In Russ.) https://doi.org/10.15829/1560-4071-2024-5889.
24. Nishikii-Tachibana M, Pargaonkar VS, Schnittger I, Haddad F, Rogers IS, Tremmel JA, Wang PJ. Myocardial bridging is associated with exerciseinduced ventricular arrhythmia and increases in QT dispersion. Ann Noninvasive Electrocardiol. 2018;23(2):e12492. https://doi.org/10.1111/anec.12492.
25. Schwarz ER, Gupta R, Haager PK, vom Dahl J, Klues HG, Minartz J, Uretsky BF. Myocardial bridging in absence of coronary artery disease: proposal of a new classification based on clinical-angiographic data and long-term follow-up. Cardiology. 2009;112(1):13–21. https://doi.org/10.1159/000137693.
Review
For citations:
Mirzoev NT, Shulenin KS, Kutelev GG, Cherkashin DV, Tedeev TG, Tyuryupov MS. Criteria for early diagnosis of myocardial perfusion disorders in asymptomatic patients with myocardial bridges. Meditsinskiy sovet = Medical Council. 2025;(6):284-290. (In Russ.) https://doi.org/10.21518/ms2025-025