Миокины в роли биологических маркеров при нарушениях углеводного обмена и атеросклерозе
https://doi.org/10.21518/ms2025-015
Аннотация
Сердечно-сосудистые заболевания становятся причиной более половины всех случаев летального исхода. Ишемическая болезнь сердца занимает лидирующее место по причине смертности во всем мире. Основным фактором, способствующим развитию ишемической болезни сердца, является атеросклероз, который на ранних стадиях часто не проявляет симптомов. Важную роль в появлении и ухудшении сердечно-сосудистых заболеваний играют расстройства углеводного обмена. Продолжается поиск сердечно-сосудистых биомаркеров, которые могли бы помочь в диагностике заболеваний сердечно-сосудистой системы и служить прогностическими показателями. В данном научном обзоре акцентируется внимание на важности оценки миокинов. К настоящему времени продемонстрирована значимость при сердечно-сосудистой патологии таких миокинов, как миостатин, иризин, метеориноподобный белок, мозговой нейротрофический фактор, апелин, мицугумин 53 и др. Установлено, что миостатин негативно влияет на углеводный обмен и атеросклеротические процессы, ухудшая липидный профиль, увеличивая накопление жировой ткани и снижая ее «побурение». Подавление миостатина при инфаркте миокарда способствует восстановлению сердца; его концентрации, наряду с уровнем тропонина, отражают повреждение миокарда. Исследования мозгового нейротрофического фактора также подчеркивают значимость и целесообразность его определения при сахарном диабете и ишемической болезни сердца. Оценка уровня метеориноподобного белка может быть полезной при сахарном диабете и оценке риска атеросклероза. Установлена достоверная связь апелина и иризина с нарушениями углеводного обмена и атеросклеротическими сердечно-сосудистыми заболеваниями, что также делает их перспективными терапевтическими молекулами. Мицугумин 53 показал актуальность в роли маркера при атеросклерозе, однако его влияние на углеводный обмен требует прояснения. Серийное тестирование миокинов, включая использование мультимаркерных панелей, требует дальнейшего изучения для подтверждения значимости в клинической практике.
Ключевые слова
Об авторах
А. М. АлиеваРоссия
Алиева Амина Магомедовна, к.м.н., доцент кафедры госпитальной терапии имени академика Г.И. Сторожакова
117513, Россия, Москва, ул. Островитянова, д. 1
И. Е. Байкова
Россия
Байкова Ирина Евгеньевна, к.м.н., доцент кафедры госпитальной терапии имени академика Г.И. Сторожакова
117513, Россия, Москва, ул. Островитянова, д. 1
М. Ф. Ахмедова
Узбекистан
Ахмедова Мадина Фатхуллаевна, к.м.н., врач-кардиолог
100211, Республика Узбекистан, Ташкент, ул. Кичик Халка Йули, д. 5а
А. А. Меликулов
Узбекистан
Меликулов Алишер Алмардонович, д.м.н., врач – сердечно-сосудистый хирург
100211, Республика Узбекистан, Ташкент, ул. Кичик Халка Йули, д. 5а
А. Б. Султангалиева
Россия
Султангалиева Альбина Булатовна, студент
117513, Россия, Москва, ул. Островитянова, д. 1
А. М. Рахаев
Россия
Рахаев Алик Магомедович, д.м.н., профессор кафедры детских болезней, акушерства и гинекологии
360004, Россия, Кабардино-Балкарская Республика, Нальчик, ул. Чернышевского, д. 173
А. О. Асанов
Россия
Асанов Алим Орусбиевич, к.м.н., доцент кафедры неврологии, психиатрии и наркологии
360004, Россия, Кабардино-Балкарская Республика, Нальчик, ул. Чернышевского, д. 173
А. А. Мусукаев
Россия
Мусукаев Азрет Алимович, студент
117513, Россия, Москва, ул. Островитянова, д. 1
И. Г. Никитин
Россия
Никитин Игорь Геннадиевич, д.м.н., профессор, заведующий кафедрой госпитальной терапии имени академика Г.И. Сторожакова
117513, Россия, Москва, ул. Островитянова, д. 1
Список литературы
1. Deng P, Fu Y, Chen M, Wang D, Si L. Temporal trends in inequalities of the burden of cardiovascular disease across 186 countries and territories. Int J Equity Health. 2023;22(1):164. https://doi.org/10.1186/s12939-023-01988-2.
2. Wong ND, Sattar N. Cardiovascular risk in diabetes mellitus: epidemiology, assessment and prevention. Nat Rev Cardiol. 2023;20(10):685–695. https://doi.org/10.1038/s41569-023-00877-z.
3. Алиева АМ, Теплова НВ, Батов МА, Воронкова КВ, Валиев РК, Шнахова ЛМ и др. Пентраксин-3 – перспективный биологический маркер при сердечной недостаточности: литературный обзор. Consilium Medicum. 2022;24(1):53–59. https://doi.org/10.26442/20751753.2022.1.201382.
4. Алиева АМ, Резник ЕВ, Пинчук ТВ, Аракелян РА, Валиев РК, Рахаев АМ и др. Фактор дифференцировки роста-15 как биологический маркер при сердечной недостаточности. Архивъ внутренней медицины. 2023;13(1):14–23. https://doi.org/10.20514/2226-6704-2023-13-1-14-23.
5. Алиева АМ, Теплова НВ, Кисляков ВА, Воронкова КВ, Шнахова ЛМ, Валиев РК и др. Биомаркеры в кардиологии: микроРНК и сердечная недостаточность. Терапия. 2022;(1):60–70. https://doi.org/10.18565/therapy.2022.1.60-70.
6. Lyu JX, Guo DD, Song YC, Zhang MR, Ge FQ, Zhao J et al. Circulating Myokines as Novel Biomarkers for Cardiovascular Diseases. Rev Cardiovasc Med. 2024;25(2):56. https://doi.org/10.31083/j.rcm2502056.
7. Knapp M, Supruniuk E, Górski J. Myostatin and the Heart. Biomolecules. 2023;13(12):1777. https://doi.org/10.3390/biom13121777.
8. Sharma M, McFarlane C, Kambadur R, Kukreti H, Bonala S, Srinivasan S. Myostatin: expanding horizons. IUBMB Life. 2015;67(8):589–600. https://doi.org/10.1002/iub.1392.
9. Wang H, Guo S, Gao H, Ding J, Li H, Kong X et al. Myostatin regulates energy homeostasis through autocrine- and paracrine-mediated microenvironment communication. J Clin Invest. 2024;134(16):e178303. https://doi.org/10.1172/JCI178303.
10. Cheng J, Lee J, Liu Y, Wang Y, Duan M, Zeng Z. Effects of myostatin gene knockout on white fat browning and related gene expression in type 2 diabetic mice. Adv Clin Exp Med. 2024;33(6):609–617. https://doi.org/10.17219/acem/171300.
11. Dichtel LE, Kimball A, Bollinger B, Scarff G, Gerweck AV, Bredella MA, Haines MS. Higher serum myostatin levels are associated with lower insulin sensitivity in adults with overweight/obesity. Physiol Rep. 2024;12(17):e16169. https://doi.org/10.14814/phy2.16169.
12. Chung JO, Park SY, Chung DJ, Chung MY. Serum myostatin levels are positively associated with diabetic retinopathy in individuals with type 2 diabetes mellitus. J Diabetes Complications. 2020;34(7):107592. https://doi.org/10.1016/j.jdiacomp.2020.107592.
13. Esposito P, Verzola D, Picciotto D, Cipriani L, Viazzi F, Garibotto G. Myostatin/Activin-A Signaling in the Vessel Wall and Vascular Calcification. Cells. 2021;10(8):2070. https://doi.org/10.3390/cells10082070.
14. Castillero E, Akashi H, Najjar M, Ji R, Brandstetter LM, Wang C et al. Activin type II receptor ligand signaling inhibition after experimental ischemic heart failure attenuates cardiac remodeling and prevents fibrosis. Am J Physiol Heart Circ Physiol. 2020;318(2):H378–H390. https://doi.org/10.1152/ajpheart.00302.2019.
15. Lim S, McMahon CD, Matthews KG, Devlin GP, Elston MS, Conaglen JV. Absence of Myostatin Improves Cardiac Function Following Myocardial Infarction. Heart Lung Circ. 2018;27(6):693–701. https://doi.org/10.1016/j.hlc.2017.05.138.
16. Meloux A, Rochette L, Maza M, Bichat F, Tribouillard L, Cottin Y et al. Growth Differentiation Factor-8/Myostatin is a Predictor of Troponin I Peak and a Marker of Clinical Severity after Acute Myocardial Infarction. J Clin Med. 2019;9(1):116. https://doi.org/10.3390/jcm9010116.
17. Wang S, Hu S, Pan Y. The emerging roles of irisin in vascular calcification. Front Endocrinol. 2024;15:1337995. https://doi.org/10.3389/fendo.2024.1337995.
18. Zhang T, Yi Q, Huang W, Feng J, Liu H. New insights into the roles of Irisin in diabetic cardiomyopathy and vascular diseases. Biomed Pharmacother. 2024;175:116631. https://doi.org/10.1016/j.biopha.2024.116631.
19. Liu TY, Shi CX, Gao R, Sun HJ, Xiong XQ, Ding L et al. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes. Clin Sci. 2015;129(10):839–850. https://doi.org/10.1042/CS20150009.
20. Du XL, Jiang WX, Lv ZT. Lower Circulating Irisin Level in Patients with Diabetes Mellitus: A Systematic Review and Meta-Analysis. Horm Metab Res. 2016;48(10):644–652. https://doi.org/10.1055/s-0042-108730.
21. Hou Q, Song R, Zhao X, Yang C, Feng Y. Lower circulating irisin levels in type 2 diabetes mellitus patients with chronic complications: A meta-analysis. Heliyon. 2023;9(11):e21859. https://doi.org/10.1016/j.heliyon.2023.e21859.
22. Zhang Y, Mu Q, Zhou Z, Song H, Zhang Y, Wu F et al. Protective effect of irisin on atherosclerosis via suppressing oxidized low-density lipoprotein induced vascular inflammation and endothelial dysfunction. PLoS ONE. 2016;11(6):e0158038. https://doi.org/10.1371/journal.pone.0158038.
23. Zhu D, Wang H, Zhang J, Zhang X, Xin C, Zhang F et al. Irisin improves endothelial function in type 2 diabetes through reducing oxidative/nitrative stresses. J Mol Cell Cardiol. 2015;87:138–47. https://doi.org/10.1016/j.yjmcc.2015.07.015.
24. Moscoso I, Cebro-Márquez M, Rodríguez-Mañero M, González-Juanatey JR, Lage R. FNDC5/Irisin counteracts lipotoxic-induced apoptosis in hypoxic H9c2 cells. J Mol Endocrinol. 2019;63(2):151–159. https://doi.org/10.1530/JME-19-0123.
25. Zhang M, Xu Y, Jiang L. Irisin attenuates oxidized low-density lipoprotein impaired angiogenesis through AKT/mTOR/S6K1/Nrf2 pathway. J Cell Physiol. 2019;234(10):18951–18962. https://doi.org/10.1002/jcp.28535.
26. Fu S, Xing G. Changes in Serum Irisin Levels and Their Significance in Carotid Atherosclerosis Associated with Obesity. Altern Ther Health Med. 2024;30(12):194–199. Available at: https://pubmed.ncbi.nlm.nih.gov/38518138.
27. Guo W, Zhang B, Wang X. Lower irisin levels in coronary artery disease: a meta-analysis. Minerva Endocrinol. 2020;45(1):61–69. https://doi.org/10.23736/S0391-1977.17.02663-3.
28. Tanveer Y, Saif U, Lim Y. Serum Irisin Levels Are Inversely Correlated with the Severity of Coronary Artery Disease Confirmed by Coronary Angiography: A Comparative Cross-Sectional Study. Cureus. 2023;15(7):e41475. https://doi.org/10.7759/cureus.41475.
29. Ozturk D, Melekoglu A, Altinbilek E, Calik M, Kosem A, Kilci H et al. Association Between Serum Irisin Levels and ST-Segment Elevation Myocardial Infarction. Int J Gen Med. 2023;16:1355–1362. https://doi.org/10.2147/IJGM.S403564.
30. Chai Q, Zhang W, Gao L, Yang Y, Xin S. Serum irisin correlates to the severity of acute myocardial infarction and predicts the postoperative major adverse cardiovascular events. Biomol Biomed. 2023;23(5):785–791. https://doi.org/10.17305/bb.2023.8888.
31. Li Z, Gao Z, Sun T, Zhang S, Yang S, Zheng M et al. Meteorin-like/Metrnl, a novel secreted protein implicated in inflammation, immunology, and metabolism: A comprehensive review of preclinical and clinical studies. Front Immunol. 2023;14:1098570. https://doi.org/10.3389/fimmu.2023.1098570.
32. Dong WS, Hu C, Hu M, Gao YP, Hu YX, Li K et al. Metrnl: a promising biomarker and therapeutic target for cardiovascular and metabolic diseases. Cell Commun Signal. 2024;22(1):389. https://doi.org/10.1186/s12964-024-01767-8.
33. Miao ZW, Hu WJ, Li ZY, Miao CY. Involvement of the secreted protein Metrnl in human diseases. Acta Pharmacol Sin. 2020;41(12):1525–1530. https://doi.org/10.1038/s41401-020-00529-9.
34. Hu W, Wang R, Sun B. Meteorin-Like Ameliorates β Cell Function by Inhibiting β Cell Apoptosis of and Promoting β Cell Proliferation via Activating the WNT/β-Catenin Pathway. Front Pharmacol. 2021;12:627147. https://doi.org/10.3389/fphar.2021.627147.
35. Jung TW, Lee SH, Kim HC, Bang JS, Abd El-Aty AM, Hacımüftüoğlu A et al. METRNL attenuates lipid-induced inflammation and insulin resistance via AMPK or PPARδ-dependent pathways in skeletal muscle of mice. Exp Mol Med. 2018;50(9):1–11. https://doi.org/10.1038/s12276-018-0147-5.
36. Yao C, Zhang H, Wang L, Li J. Correlation of serum Meteorin-like (Metrnl) level with type 2 diabetic peripheral neuropathy. BMC Endocr Disord. 2024;24(1):83. https://doi.org/10.1186/s12902-024-01616-2.
37. Fadaei R, Dadmanesh M, Moradi N, Ahmadi R, Shokoohi Nahrkhalaji A, Aghajani H et al. Serum levels of subfatin in patients with type 2 diabetes mellitus and its association with vascular adhesion molecules. Arch Physiol Biochem. 2020;126(4):335–340. https://doi.org/10.1080/13813455.2018.1538248.
38. El-Ashmawy HM, Selim FO, Hosny TAM, Almassry HN. Association of low serum Meteorin like (Metrnl) concentrations with worsening of glucose tolerance, impaired endothelial function and atherosclerosis. Diabetes Res Clin Pract. 2019;150:57–63. https://doi.org/10.1016/j.diabres.2019.02.026.
39. Reboll MR, Klede S, Taft MH, Cai CL, Field LJ, Lavine KJ et al. Meteorin-like promotes heart repair through endothelial KIT receptor tyrosine kinase. Science. 2022;376(6599):1343–1347. https://doi.org/10.1126/science.abn3027.
40. Xu L, Cai Y, Wang Y, Xu C. Meteorin-Like Attenuates Myocardial Ischemia/Reperfusion Injury-Induced Cardiomyocytes Apoptosis by Alleviating Endoplasmic Reticulum Stress via Activation of AMPK-PAK2 Signaling in H9C2 Cells. Med Sci Monit. 2020;26:e924564. https://doi.org/10.12659/msm.924564.
41. Dadmanesh M, Aghajani H, Fadaei R, Ghorban K. Lower serum levels of Meteorin-like/Subfatin in patients with coronary artery disease and type 2 diabetes mellitus are negatively associated with insulin resistance and inflammatory cytokines. PLoS ONE. 2018;13(9):e0204180. https://doi.org/10.1371/journal.pone.0204180.
42. El-Ashmawy HM, Selim FO, Hosny TAM, Almassry HN. Association of low serum Meteorin like concentrations with worsening of glucose tolerance, impaired endothelial function and atherosclerosis. Diabetes Res Clin Pract. 2019;150:57–63. https://doi.org/10.1016/j.diabres.2019.02.026.
43. Miao ZW, Wang N, Hu WJ, Zheng SL, Wang DS, Chang FQ et al. Chronic vascular pathogenesis results in the reduced serum Metrnl levels in ischemic stroke patients. Acta Pharmacol Sin. 2024;45(5):914–925. https://doi.org/10.1038/s41401-023-01204-5.
44. Liu ZX, Ji HH, Yao MP, Wang L, Wang Y, Zhou P et al. Serum Metrnl is associated with the presence and severity of coronary artery disease. J Cell Mol Med. 2019;23(1):271–280. https://doi.org/10.1111/jcmm.13915.
45. Giden R, Yasak IH. Meteorin-like protein decreases in acute coronary syndrome. Eur Rev Med Pharmacol Sci. 2023;27(1):208–214. https://doi.org/10.26355/eurrev_202301_30873.
46. Albini M, Krawczun-Rygmaczewska A, Cesca F. Astrocytes and brainderived neurotrophic factor. Neurosci Res. 2023;197:42–51. https://doi.org/10.1016/j.neures.2023.02.001.
47. Harvey T, Rios M. The Role of BDNF and TrkB in the Central Control of Energy and Glucose Balance: An Update. Biomolecules. 2024;14(4):424. https://doi.org/10.3390/biom14040424.
48. Ernfors P, Lee K-F, Jaenisch R. Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature. 1994;368(6467):147–150. https://doi.org/10.1038/368147a0.
49. Sefidgari-Abrasi S, Roshangar L, Karimi P, Morshedi M, Rahimiyan-Heravan M, Saghafi-Asl M. From the gut to the heart: L. plantarum and inulin administration as a novel approach to control cardiac apoptosis via 5-HT2B and TrkB receptors in diabetes. Clin Nutr. 2021;40(1):190–201. https://doi.org/10.1016/j.clnu.2020.05.004.
50. Nakagawa T, Ono-Kishino M, Sugaru E, Yamanaka M, Taiji M, Noguchi H. Brain-derived neurotrophic factor regulates glucose and energy metabolism in diabetic mice. Diabetes Metab Res Rev. 2002;18(3):185–191. https://doi.org/https://doi.org/10.1002/dmrr.290.
51. Chan CB, Ahuja P, Ye K. Developing Insulin and BDNF Mimetics for Diabetes Therapy. Curr Top Med Chem. 2019;19(24):2188–2204. https://doi.org/10.2174/1568026619666191010160643.
52. Moosaie F, Mohammadi S, Saghazadeh A, Dehghani Firouzabadi F, Rezaei N. Brain-derived neurotrophic factor in diabetes mellitus: A systematic review and meta-analysis. PLoS ONE. 2023;18(2):e0268816. https://doi.org/10.1371/journal.pone.0268816.
53. He WL, Chang FX, Wang T, Sun BX, Chen RR, Zhao LP. Serum brain-derived neurotrophic factor levels in type 2 diabetes mellitus patients and its association with cognitive impairment: A meta-analysis. PLoS ONE. 2024;19(4):e0297785. https://doi.org/10.1371/journal.pone.0297785.
54. Liu Y, Sun L, Huan Y, Zhao H, Deng J. Application of bFGF and BDNF to improve angiogenesis and cardiac function. J Surg Res. 2006;136(1):85–91. https://doi.org/10.1016/j.jss.2006.04.034.
55. Ejiri J, Inoue N, Kobayashi S, Shiraki R, Otsui K, Honjo T et al. Possible Role of Brain-Derived Neurotrophic Factor in the Pathogenesis of Coronary Artery Disease. Circulation. 2005;112(14):2114–2120. https://doi.org/10.1161/circulationaha.104.476903.
56. Hang P, Zhao J, Cai B, Tian S, Huang W, Guo J et al. Brain-de rived neurotrophic factor regulates TRPC3/6 channels and protects against myocardial infarction in rodents. Int J Biol Sci. 2015;11(5):536–545. https://doi.org/10.7150/ijbs.10754.
57. Donovan MJ, Lin MI, Wiegn P, Ringstedt T, Kraemer R, Hahn R et al. Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development. 2000;127(21):4531–4540. https://doi.org/10.1242/dev.127.21.4531.
58. Yaneva-Sirakova T, Traykov L, Karamfiloff K, Petrov I, Hristova J, Vassilev D. Neurotrophins in carotid atherosclerosis and stenting. Ann Med. 2023;55(1):335–341. https://doi.org/10.1080/07853890.2022.2163052.
59. Shobeiri P, Behnoush AH, Khalaji A, Teixeira AL, Rezaei N. Peripheral Levels of the Brain-Derived Neurotrophic Factor in Coronary Artery Disease: A Systematic Review and Meta-Analysis. J Tehran Heart Cent. 2023;18(4):244–255. https://doi.org/10.18502/jthc.v18i4.14823.
60. Chapman FA, Maguire JJ, Newby DE, Davenport AP, Dhaun N. Targeting the apelin system for the treatment of cardiovascular diseases. Cardiovasc Res. 2023;119(17):2683–2696. https://doi.org/10.1093/cvr/cvad171.
61. Liu W, Yan J, Pan W, Tang M. Apelin/Elabela-APJ: a novel therapeutic target in the cardiovascular system. Ann Transl Med. 2020;8(5):243. https://doi.org/10.21037/atm.2020.02.07.
62. Loukas N, Vrachnis D, Antonakopoulos N, Stavros S, Machairiotis N, Fotiou A et al. Decoding Apelin: Its Role in Metabolic Programming, Fetal Growth, and Gestational Complications. Children. 2024;11(10):1270. https://doi.org/10.3390/children11101270.
63. Varra FN, Varras M, Varra VK, Theodosis-Nobelos P. Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammationmediating treatment options. Mol Med Rep. 2024;29(6):95. https://doi.org/10.3892/mmr.2024.13219.
64. Al-Mansoori L, Al-Jaber H, Price MS, Elrayess MA. Role of inflammatory cytokines, growth factors and adipokines in adipogenesis and insulin resistance. Inflammation. 2022;45(1):31–44. https://doi.org/10.1007/s10753-021-01559-z.
65. Fibbi B, Marroncini G, Naldi L, Peri A. The Yin and Yang effects of the apelinergic system in oxidative stress. Int J Mol Sci. 2023;24(5):4745. https://doi.org/10.3390/ijms24054745.
66. Onalan E, Yakar B, Barım AO, Gursu MF. Serum apelin and resistin levels in patients with impaired fasting glucose, impaired glucose tolerance, type 2 diabetes, and metabolic syndrome. Endokrynol Pol. 2020;71(4):319–324. https://doi.org/10.5603/EP.a2020.0024.
67. Noori-Zadeh A, Bakhtiyari S, Khanjari S, Haghani K, Darabi S. Elevated blood apelin levels in type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes Res Clin Pract. 2019;148:43–53. https://doi.org/10.1016/j.diabres.2018.12.012.
68. Pérez-López FR, Wu JN, Yao L, López-Baena MT, Pérez-Roncero GR, Varikasuvu SR. Apelin levels in pregnant women with and without gestational diabetes mellitus: a collaborative systematic review and meta-analysis. Gynecol Endocrinol. 2022;38(10):803–812. https://doi.org/10.1080/09513590.2022.2114450.
69. Chun HJ. Apelin signaling antagonizes Ang II effects in mouse models of atherosclerosis. Clin Invest. 2008;118(10):3343–3354. https://doi.org/10.1172/jci34871.
70. Fraga-Silva RA, Seeman H, Montecucco F, da Silva AR, Burger F, Costa-Fraga FP et al. Apelin-13 treatment enhances the stability of atherosclerotic plaques. Eur J Clin Invest. 2018;48(3):e12891. https://doi.org/10.1111/eci.12891.
71. Tang L, Qiu H, Xu B, Su Y, Nyarige V, Li P et al. Microparticle Mediated Delivery of Apelin Improves Heart Function in Post Myocardial Infarction Mice. Circ Res. 2024;135(7):777–798. https://doi.org/10.1161/circresaha.124.324608.
72. Han R, Huang H, Zhu J, Jin X, Wang Y, Xu Y, Xia Z. Adipokines and their potential impacts on susceptibility to myocardial ischemia/reperfusion injury in diabetes. Lipids Health Dis. 2024;23(1):372. https://doi.org/10.1186/s12944-024-02357-w.
73. El Wakeel MES, Ahmad IH, Mohammed MA, Ali SMO, El Wahab MKA, Shipl WM. Correlation of serum apelin level with carotid intima-media thickness and insulin resistance in a sample of Egyptian patients with type 2 diabetes mellitus. J Res Med Sci. 2022;27:13. https://doi.org/10.4103/jrms.jrms_675_20.
74. Babapour B, Doustkami H, Avesta L, Kiamehr P, Aslani MR. Negative association of apelin plasma levels with epicardial fat thickness in patients with stable angina and acute myocardial infarction: A case-control study. J Res Med Sci. 2024;29:26. https://doi.org/10.4103/jrms.jrms_478_22.
75. Liu HT, Chen M, Yu J, Li WJ, Tao L, Li Y et al. Serum apelin level predicts the major adverse cardiac events in patients with ST elevation myocardial infarction receiving percutaneous coronary intervention. Medicine. 2015;94(4):e449. https://doi.org/10.1097/md.0000000000000449.
76. Zhong W, Benissan-Messan DZ, Ma J, Cai C, Lee PHU. Cardiac effects and clinical applications of MG53. Cell Biosci. 2021;11(1):115. https://doi.org/10.1186/s13578-021-00629-x.
77. Liu SM, Zhao Q, Li WJ, Zhao JQ. Advances in the Study of MG53 in Cardiovascular Disease. Int J Gen Med. 2023;16:6073–6082. https://doi.org/10.2147/ijgm.s435030.
78. Qi J, Yang B, Ren C, Fu J, Zhang J. Swimming exercise alleviated insulin resistance by regulating tripartite motif family protein 72 expression and AKT signal pathway in Sprague-Dawley rats fed with high-fat diet. J Diabetes Res. 2016;2016:1564386. https://doi.org/10.1155/2016/1564386.
79. Reddy SS, Shruthi K, Prabhakar YK, Sailaja G, Reddy GB. Implication of altered ubiquitin-proteasome system and ER stress in the muscle atrophy of diabetic rats. Arch Biochem Biophys. 2018;639:16–25. https://doi.org/10.1016/j.abb.2017.12.015.
80. Ma H, Liu J, Bian Z, Cui Y, Zhou X, Zhang B et al. Effect of metabolic syndrome on mitsugumin 53 expression and function. PLoS ONE. 2015;10(5):e0124128. https://doi.org/10.1371/journal.pone.0124128.
81. Zabielski P, Lanza IR, Gopala S, Heppelmann CJ, Bergen HR 3rd, Dasari S, Nair KS. Altered Skeletal Muscle Mitochondrial Proteome as the Basis of Disruption of Mitochondrial Function in Diabetic Mice. Diabetes. 2016;65(3):561–573. https://doi.org/10.2337/db15-0823.
82. Yi JS, Park JS, Ham YM, Nguyen N, Lee NR, Hong J et al. MG53-induced IRS-1 ubiquitination negatively regulates skeletal myogenesis and insulin signalling. Nat Commun. 2013;4:2354. https://doi.org/10.1038/ncomms3354.
83. Ma LL, Kong FJ, Guo JJ, Zhu JB, Shi HT, Li Y et al. Hypercholesterolemia Abrogates Remote Ischemic Preconditioning-Induced Cardioprotection: Role of Reperfusion Injury Salvage Kinase Signals. Shock. 2017;47(3):363–369. https://doi.org/10.1097/shk.0000000000000737.
84. Philouze CTS, Cremers B, Caliez A, Lamarche G, Bernard C, Provost N, Delerive P. MG53 is not a critical regulator of insulin signaling pathway in skeletal muscle. PLoS ONE. 2021;16(2):e0245179. https://doi.org/10.1371/journal.pone.0245179.
85. Andaç B, Özgün E, Bülbül BY, Çolak SY, Okur M, Yekdeş AC et al. Association of MG53 with presence of type 2 diabetes mellitus, glycemic control, and diabetic complications. PLoS ONE. 2023;18(9):e0291333. https://doi.org/10.1371/journal.pone.0291333.
86. Bianchi C, Vaccaro O, Distaso M, Franzini L, Raggi F, Solini A. MG53 does not mark cardiovascular risk and all-cause mortality in subjects with type 2 diabetes: A prospective, observational study. Diabetes Res Clin Pract. 2023;204:110916. https://doi.org/10.1016/j.diabres.2023.110916.
87. Wang Y, Zhou H, Wu J, Ye S. MG53 alleviates hypoxia/reoxygenationinduced cardiomyocyte injury by succinylation and ubiquitination modification. Clin Exp Hypertens. 2023;45(1):2271196. https://doi.org/10.1080/10641963.2023.2271196.
88. Gumpper-Fedus K, Park KH, Ma H, Zhou X, Bian Z, Krishnamurthy K et al. MG53 preserves mitochondrial integrity of cardiomyocytes during ischemia reperfusion-induced oxidative stress. Redox Biology. 2022;54:102357. https://doi.org/10.1016/j.redox.2022.102357.
89. Xie H, Wang Y, Zhu T, Feng S, Yan Z, Zhu Z et al. Serum MG53/TRIM72 Is Associated With the Presence and Severity of Coronary Artery Disease and Acute Myocardial Infarction. Front Physiol. 2020;11:617845. https://doi.org/10.3389/fphys.2020.617845.
90. Xie H, Yan Z, Feng S, Zhu T, Zhu Z, Ni J et al. Prognostic Value of Circulating MG53 Levels in Acute Myocardial Infarction. Front Cardiovasc Med. 2020;7:596107. https://doi.org/10.3389/fcvm.2020.596107.
Рецензия
Для цитирования:
Алиева АМ, Байкова ИЕ, Ахмедова МФ, Меликулов АА, Султангалиева АБ, Рахаев АМ, Асанов АО, Мусукаев АА, Никитин ИГ. Миокины в роли биологических маркеров при нарушениях углеводного обмена и атеросклерозе. Медицинский Совет. 2025;(6):291-300. https://doi.org/10.21518/ms2025-015
For citation:
Alieva AM, Baykova IE, Akhmedova MF, Melikulov AA, Sultangalieva AB, Rahaev AM, Asanov AO, Musukaev AA, Nikitin IG. Myokines as biological markers in disorders of carbohydrate metabolism and atherosclerosis. Meditsinskiy sovet = Medical Council. 2025;(6):291-300. (In Russ.) https://doi.org/10.21518/ms2025-015