Preview

Meditsinskiy sovet = Medical Council

Advanced search

Neutrophil extracellular traps in patients with ulcerative colitis

https://doi.org/10.21518/ms2025-227

Abstract

Introduction. The pathogenesis of ulcerative colitis (UC) is based on damage to the intestinal mucosa, increased expression of proinflammatory cytokines, and activation of inflammatory cells, including neutrophils. The degree of neutrophil infiltration of the intestinal mucosa determines the severity of clinical manifestations, endoscopic findings, and systemic manifestations of inflammation.

Aim. The study was to compare the parameters of the systemic inflammatory response with changes in the ability of neutrophils to form extracellular traps in patients with ulcerative colitis (UC).

Materials and methods. The study included 33 patients with UC (group UC), the control group consisted of 20 healthy volunteers (group Control). The ability of neutrophils to form extracellular neutrophil traps (NETs) ex vivo in both groups was determined. The result of stimulation was evaluated by luminescent microscopy, determining the percentage of intact neutrophils, neutrophils of varying degrees of activation, early netosis cells, extracellular traps in the form of a cloud surrounding neutrophil – cloud-shaped NETs, extracellular traps in the form of filaments – filamentous NETs. The capture coefficient of extracellular traps was calculated.

Results. After stimulation, significantly large proportions of early netosis cells (p = 0.0003), cloud-shaped NETs (p < 0.0001), filamentous NETs (p = 0.0048) and hyperactivated neutrophils were visualized in the neutrophil preparation of patients with UC in comparison with similar indicators determined in the comparison group. In UC patients, the percentage of intact and hypoactivated neutrophils was significantly lower (p < 0.0001; p = 0.0012, respectively), and the extracellular traps capture coefficient in the UC group was significantly lower (p = 0.0078).

Conclusions. The study confirms that the analysis of the ability of neutrophils to form extracellular traps in patients with UC has diagnostic and prognostic value. It allows us to assess not only the severity of inflammation, but also to identify the mechanisms of abnormal immunity in autoimmune pathologies, including UC. Monitoring of netosis helps to determine the depth of remission, which is important for the prevention of complications of the disease. Integrating this approach into diagnostic algorithms can optimize patient monitoring and improve treatment outcomes.

About the Authors

G. R. Bikbavova
Omsk State Medical University
Russian Federation

Galiya R. Bikbavova, Cand. Sci. (Med.), Associate Professor, Associate Professor of the Department of Hospital Therapy, Endocrinology

12, Lenin St., Omsk, 644099



M. A. Livzan
Omsk State Medical University
Russian Federation

Maria A. Livzan, Corr. Member RAS, Dr. Sci. (Med.), Professor, Rector, Head of the Department of Faculty Therapy and Gastroenterology

12, Lenin St., Omsk, 644099



D. G. Novikov
Omsk State Medical University
Russian Federation

Dmitry G. Novikov, Cand. Sci. (Med.), Associate Professor, Associate Professor of the Department of Clinical laboratory diagnostics, Head of the Central Research Laboratory

12, Lenin St., Omsk, 644099



A. N. Zolotov
Omsk State Medical University
Russian Federation

Alexander N. Zolotov, Cand. Sci. (Med.), Senior Researcher, Central Research Laboratory

12, Lenin St., Omsk, 644099



N. A. Kirichenko
Omsk State Medical University
Russian Federation

Nikolay A. Kirichenko, Junior Researcher at the Central Research Laboratory

12, Lenin St., Omsk, 644099



References

1. Абдулганиева ДИ, Алексеева ОА, Ачкасов СИ, Бакулин ИГ, Барышева ОЮ, Белоусова ЕА и др. Язвенный колит. Клинические рекомендации. 2024. Режим доступа: https://cr.minzdrav.gov.ru/view-cr/193_2.

2. Caliendo G, D’Elia G, Makker J, Passariello L, Albanese L, Molinari AM, Vietri MT. Biological, genetic and epigenetic markers in ulcerative colitis. Adv Med Sci. 2023;68(2):386–395. https://doi.org/10.1016/j.advms.2023.09.010.

3. Kobayashi T, Siegmund B, Le Berre C, Wei SC, Ferrante M, Shen B et al. Ulcerative colitis. Nat Rev Dis Primers. 2020;6(1):74. https://doi.org/10.1038/s41572-020-0205-x.

4. Bikbavova GR, Livzan M A, Sovalkin V I, Turchaninov D V, Lopatina OE, Tretyakova TV et al. The influence of modern lifestyle features on the occurrence of ulcerative colitis. Russian Archive of Internal Medicine. 2019;9(3):188–194. (In Russ.) https://doi.org/10.20514/2226-6704-2019-9-3-188-193.

5. Le Berre C, Honap S, Peyrin-Biroulet L. Ulcerative colitis. Lancet. 2023;402(10401):571–584. https://doi.org/10.1016/S0140-6736(23)00966-2.

6. Buie MJ, Quan J, Windsor JW, Coward S, Hansen TM, King JA et al. Global Hospitalization Trends for Crohn’s Disease and Ulcerative Colitis in the 21st Century: A Systematic Review With Temporal Analyses. Clin Gastroenterol Hepatol. 2023;21(9):2211–2221. https://doi.org/10.1016/j.cgh.2022.06.030.

7. D’Amico F, Fasulo E, Jairath V, Paridaens K, Peyrin-Biroulet L, Danese S. Management and treatment optimization of patients with mild to moderate ulcerative colitis. Expert Rev Clin Immunol. 2023;20(3):277–290. https://doi.org/10.1080/1744666X.2023.2292768.

8. Pai RK, D’Haens G, Kobayashi T, Sands BE, Travis S, Jairath V, Magro F. Histologic assessments in ulcerative colitis: the evidence behind a new endpoint in clinical trials. Expert Rev Gastroenterol Hepatol. 2024;18(1-3):73–87. https://doi.org/10.1080/17474124.2024.2326838.

9. Bhaskar S, Sinha A, Banach M, Mittoo S, Weissert R, Kass JS et al. Cytokine Storm in COVID-19-Immunopathological Mechanisms, Clinical Considerations, and Therapeutic Approaches: The REPROGRAM Consortium Position Paper. Front Immunol. 2020;11:1648. https://doi.org/10.3389/fimmu.2020.01648.

10. Liu B, Wang J, Li YY, Li KP, Zhang Q. The association between systemic immune-inflammation index and rheumatoid arthritis: evidence from NHANES 1999-2018. Arthritis Res Ther. 2023;25(1):34. https://doi.org/10.1186/s13075-023-03018-6.

11. González-Sierra M, Quevedo-Rodríguez A, Romo-Cordero A, González-Chretien G, Quevedo-Abeledo JC, de Vera-González A et al. Relationship of blood inflammatory composite markers with cardiovascular risk factors and subclinical atherosclerosis in patients with rheumatoid arthritis. Life. 2023;13(7):1469. https://doi.org/10.3390/life13071469.

12. Zhou Q, Su S, You W, Wang T, Ren T, Zhu L. Systemic Inflammation Response Index as a Prognostic Marker in Cancer Patients: A Systematic Review and MetaAnalysis of 38 Cohorts. Dose Response. 2021;19(4):15593258211064744. https://doi.org/10.1177/15593258211064744.

13. Muhammad S, Fischer I, Naderi S, Faghih Jouibari M, Abdolreza S, Karimialavijeh E et al. Systemic Inflammatory Index Is a Novel Predictor of Intubation Requirement and Mortality after SARS-CoV-2 Infection. Pathogens. 2021;10(1):58. https://doi.org/10.3390/pathogens10010058.

14. Xu Y, He H, Zang Y, Yu Z, Hu H, Cui J, Wang Z et al. Systemic inflammation response index (SIRI) as a novel biomarker in patients with rheumatoid arthritis: a multi-center retrospective study. Clin Rheumatol. 2022;41(7):1989–2000. https://doi.org/10.1007/s10067-022-06122-1.

15. Deng R, Zhu S, Fan B, Chen X, Lv H, Dai Y. Exploring the correlations between six serological inflammatory markers and different stages of type 2 diabetic retinopathy. Sci Rep. 2025;15(1):1567. https://doi.org/10.1038/s41598-025-85164-2.

16. Butin-Israeli V, Bui TM, Wiesolek HL, Mascarenhas L, Lee JJ, Mehl LC et al. Neutrophil-induced genomic instability impedes resolution of inflammation and wound healing. J Clin Invest. 2019;129(2):712–726. https://doi.org/10.1172/JCI122085.

17. Livzan MA, Bikbavova GR, Novikov DG, Zolotov AN, Kirichenko NA, Pakhtusova PO, Mikhaleva LV. Assessment of neutrophil NETs-forming activity in patients with ulcerative colitis. Medical Alphabet. 2023;(18):23–27. (In Russ.) https://doi.org/10.33667/2078-5631-2023-18-23-27.

18. Maugeri N, Capobianco A, Rovere-Querini P, Ramirez GA, Tombetti E, Vallr PD, Manfredi AA. Platelet microparticles sustain autophagyassociated activation of neutrophils in systemic sclerosis. Sci Transl Med. 2018;10(451):eaao3089. https://doi.org/10.1126/scitranslmed.aao3089.

19. Kenny EF, Herzig A, Kruger R, Muth A, Mondal S, Thompson PR et al. Diverse stimuli engage different neutrophil extracellular trap pathways. Elife. 2017;6:e24437. https://doi.org/10.7554/eLife.24437.

20. Schroder AL, Chami B, Liu Y, Doyle CM, Kazzi ME, Ahlenstiel G et al. Neutrophil extracellular trap density increases with increasing histopathological severity of Crohn’s disease. Inflamm Bowel Dis. 2022;28(4):586–598. https://doi.org/10.1093/ibd/izab239.

21. Wigerblad G, Kaplan MJ. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat Rev Immunol. 2023;23(5):274–288. https://doi.org/10.1038/s41577-022-00787-0.

22. Oh H, Siano B, Diamond S. Neutrophil isolation protocol. J Vis Exp: 2008;(17):745. https://doi.org/10.3791/745.

23. Новиков ДГ, Золотов АН, Кириченко, НА Мордык АВ. Способ обнаружения нейтрофильных внеклеточных ловушек в суправитально окрашенном препарате крови. Патент RU 2768152 C1, 23.03.2022. Режим доступа: https://elibrary.ru/item.asp?id=48376056.

24. Karasu E, Halbgebauer R, Schütte L, Greven L, Bläsius FM, Zeller J et al. A conformational change of C-reactive protein drives neutrophil extracellular trap formation in inflammation. BMC Biol. 2025;23(1):4. https://doi.org/10.1186/s12915-024-02093-8.

25. Vulesevic B, Lavoie SS, Neagoe PE, Dumas Е, Räkel А, White М, Sirois М. CRP induces NETosis in heart failure patients with or without diabetes. Immunohorizons. 2019;3(8):378–388. https://doi.org/10.4049/immunohorizons.1900026.

26. Gurpinar AB, Erdal H, Kalayci HO. Association of SII and AISI in patients with sepsis: A retrospective study. Med Science. 2025;14(1):6–9. Available at: https://medicinescience.org/article/9919.

27. Tahavvori A, Mosaddeghi-Heris R, Ghanbari Sevari F, Alavi SMA, Panahi P, Abbasi N et al. Combined systemic inflammatory indexes as reflectors of outcome in patients with COVID-19 infection admitted to ICU. Inflammopharmacology. 2023;31(5):2337–2348. https://doi.org/10.1007/s10787-023-01308-8.

28. Shvarts VA, Talibova SM, Sokolskaya MA, Ispiryan AY, Shvarts EN, Petrosyan AD et al. Association of novel biomarkers of systemic inflammation with atherosclerosis and its severity. Russian Journal of Cardiology. 2024;29(8):6025. (In Russ.) https://doi.org/10.15829/1560-4071-2024-6025.

29. Zhao X, Huang L, Hu J, Jin N, Hong J, Chen X. The association between systemic inflammation markers and paroxysmal atrial fibrillation. BMC Cardiovasc Disord. 2024;24(1):334. https://doi.org/10.1186/s12872-024-04004-9.

30. Xiu J, Lin X, Chen Q, Yu P, Lu J, Yang Y et al. The aggregate index of systemic inflammation (AISI): a novel predictor for hypertension. Front Cardiovasc Med. 2023;10:1163900. https://doi.org/10.3389/fcvm.2023.1163900.


Review

For citations:


Bikbavova GR, Livzan MA, Novikov DG, Zolotov AN, Kirichenko NA. Neutrophil extracellular traps in patients with ulcerative colitis. Meditsinskiy sovet = Medical Council. 2025;(8):152-161. (In Russ.) https://doi.org/10.21518/ms2025-227

Views: 88


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)