Preview

Meditsinskiy sovet = Medical Council

Advanced search

CPAP-THERAPY DECREASES GLYCATED HEMOGLOBIN IN PATIENTS WITH TYPE 2 DIABETES MELLITUS AND SLEEP APNOEA

https://doi.org/10.21518/2079-701X-2017-10-132-135

Abstract

Among the Type 2 Diabetes Mellitus (Type 2 DB) patients obstructive sleep apnoea (OSA) syndrome, which adversely affects the state of carbohydrate exchange and the quality of sleep, is widespread. The standard for the treatment of OSA is CPAP therapy. In this retrospective cohort study, the influence of CPAP-therapy on the level of glycosylated haemoglobin (HbA1c) was assessed in the 34 second-type SR patients receiving sugar-reducing therapy. As a result of 3 months of treatment, there has been a decrease of HbA1c by 0.7%, the disappearance of day sleepiness, and the overwhelming majority of normalization of the quality of sleep. Thus, with the combination of the Type 2 DM and the OSA of medium or heavy degree, CPAP therapy  has an independent beneficial effect on the state of carbohydrate exchange.

About the Authors

D. I. Burchakov
Sechenov First Moscow State Medical University
Russian Federation


A. Yu. Mayorov
Sechenov First Moscow State Medical University; Endocrinological Research Centre
Russian Federation

MD, Prof.



References

1. Мисникова И.В. Апноэ сна при эндокринной патологии. Альманах Клинической Медицины, 2016, 44: 493–500. doi: 10.18786/2072-0505-2016-44-4-493-500.

2. Torrella M, Castells I, Gimenez-Perez G, Recasens A, Miquel M, Simó O, et al. Intermittent hypoxia is an independent marker of poorer glycaemic control in patients with uncontrolled type 2 diabetes. Diabetes Metab, 2015, 41: 312–8. doi: 10.1016/j.diabet.2015.01.002.

3. Aronsohn RS, Whitmore H, Van Cauter E, Tasali E. Impact of Untreated Obstructive Sleep Apnea on Glucose Control in Type 2 Diabetes. Am J Respir Crit Care Med, 2010, 181: 507-13. doi: 10.1164/rccm.200909-1423OC.

4. Kushida CA, Chediak A, Berry RB, Brown LK, Gozal D, Iber C, et al. Clinical guidelines for the manual titration of positive airway pressure in patients with obstructive sleep apnea. J Clin Sleep Med, 2008, 4: 157-71.

5. Martínez-Cerón E, Barquiel B, Bezos A-M, Casitas R, Galera R, García-Benito C, et al. Effect of Continuous Positive Airway Pressure on Glycemic Control in Patients with Obstructive Sleep Apnea and Type 2 Diabetes. A Randomized Clinical Trial. Am J Respir Crit Care Med, 2016, 194: 476–85. doi: 10.1164/rccm.201510-1942OC.

6. Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res, 1989, 28: 193–213.

7. Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep, 1991, 14: 540–5.

8. Fredheim JM, Røislien J, Hjelmesæth J. Validation of a portable monitor for the diagnosis of obstructive sleep apnea in morbidly obese patients. J Clin Sleep Med, 2014, 10: 751–7, 757A. doi: 10.5664/jcsm.3864.

9. Ng SSS, Chan T-O, To K-W, Ngai J, Tung A, Ko FWS, et al. Validation of a portable recording device (ApneaLink) for identifying patients with suspected obstructive sleep apnoea syndrome. Intern Med J, 2009, 39: 757–62. doi: 10.1111/j.1445-5994.2008.01827.x.

10. Morgenthaler TI, Aurora RN, Brown T, Zak R, Alessi C, Boehlecke B, et al. Practice parameters for the use of autotitrating continuous positive airway pressure devices for titrating pressures and treating adult patients with obstructive sleep apnea syndrome: an update for 2007. An American Academy of Sleep Medicine report. Sleep, 2008, 31: 141–7.

11. Schwab RJ, Badr SM, Epstein LJ, Gay PC, Gozal D, Kohler M, et al. An Official American Thoracic Society Statement: Continuous Positive Airway Pressure Adherence Tracking Systems. The Optimal Monitoring Strategies and Outcome Measures in Adults. Am J Respir Crit Care Med, 2013, 188: 613–20. doi: 10.1164/rccm.201307-1282ST.

12. Дедов И.И., Шестакова М.В. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. 7-й выпуск. Diabetes Mellit, 2015, 18: 1–112. doi: 10.14341/DM20131S1-121.

13. Hassaballa H, Tulaimat A, Herdegen JJ, Mokhlesi B. The effect of continuous positive airway pressure on glucose control in diabetic patients with severe obstructive sleep apnea. Sleep Breath, 2005, 9: 176–80. doi: 10.1007/s11325-005-0033-y.

14. Harsch IA, Schahin SP, Brückner K, RadespielTröger M, Fuchs FS, Hahn EG, et al. The Effect of Continuous Positive Airway Pressure Treatment on Insulin Sensitivity in Patients with Obstructive Sleep Apnoea Syndrome and Type 2 Diabetes. Respiration, 2004, 71: 252–9. doi: 10.1159/000077423.

15. Smurra M, Philip P, Taillard J, Guilleminault C, Bioulac B, Gin H. CPAP treatment does not affect glucose-insulin metabolism in sleep apneic patients. Sleep Med, 2001, 2: 207–13.

16. Grimaldi D, Beccuti G, Touma C, Van Cauter E, Mokhlesi B. Association of Obstructive Sleep Apnea in Rapid Eye Movement Sleep With Reduced Glycemic Control in Type 2 Diabetes: Therapeutic Implications. Diabetes Care, 2014, 37.

17. Teramoto S, Yamaguchi Y, Yamamoto H, Hanaoka Y, Ishii M, Hibi S, et al. Cardiovascular and metabolic effects of CPAP in obese obstructive sleep apnoea patients. Eur Respir J Off J Eur Soc Clin Respir Physiol, 2008, 31: 222–3. doi: 10.1183/09031936.00085707.

18. Zhao YY, Wang R, Gleason KJ, Lewis EF, Quan SF, Toth CM, et al. Effect of continuous positive airway pressure treatment on health-related quality of life and sleepiness in high cardiovascular risk individuals with sleep apnea: Best Apnea Interventions for Research (BestAIR) Trial. Sleep, 2017. doi: 10.1093/sleep/zsx040.


Review

For citations:


Burchakov DI, Mayorov AY. CPAP-THERAPY DECREASES GLYCATED HEMOGLOBIN IN PATIENTS WITH TYPE 2 DIABETES MELLITUS AND SLEEP APNOEA. Meditsinskiy sovet = Medical Council. 2017;(10):132-135. (In Russ.) https://doi.org/10.21518/2079-701X-2017-10-132-135

Views: 806


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)