Basics of gastric acid secretion
https://doi.org/10.21518/2079-701X-2018-3-7-14
Abstract
The article provides a systematic review of modern literary data on the basics of gastric acid secretion. It describes the ionic transport systems of the parietal cell involved in the hydrochloric acid synthesis. The molecular structure of H +, K + -ATPhase (proton pump) is discussed. The article characterizes various ways of regulation of gastric acid secretion (neural, hormonal and paracrine) and intracellular signal transduction processes of a parietal cell.
About the Authors
I. V. MaevRussian Federation
MD, Prof.
D. N. Andreev
Russian Federation
PhD in medicine
A. V. Zaborovsky
Russian Federation
PhD in medicine
References
1. Guyton and Hall: Textbook of Medical Physiology. Thirteenth edition. Elsevier, 2016.
2. Schubert ML, Kaunitz JD. Gastric Secretion. In.: Sleisenger and Fordtran’s Gastrointestinal and Liver Disease: Pathophysiology, Diagnosis, Management. Edited by Mark Feldman, Law rence S Friedman, Laurence J Brandt. 10th ed. 2015.
3. Maev IV, Samsonov AA, Andreev DN. Stomach diseases. Moscow: GEOTAR-Media, 2015.
4. Guide to Internal Medicine. Edited by Arutyunova GP, Martynova AI, Spassky AA. M., 2015.
5. Netter’s Gastroenterology, 2nd Edition. Saunders. 2010.
6. Schubert ML. Physiologic, pathophysiologic, and pharmacologic regulation of gastric acid secretion. Curr Opin Gastroenterol, 2017, 33(6): 430-438.
7. Naik SR, Bajaj SC, Goyal RK et al. Parietal cell mass in healthy human stomach. Gastroenterology, 1971, 61: 682-685.
8. Feldman, M. American Journal of Gastroentero-logy lecture: Gastric acid secretion: Still relevant? Am J Gastroenterol, 2013, 108: 347–352.
9. Andreev DN, Dicheva DT, Lebedeva EG, Partzvania-Vinogradova EV. Pharmacological principles for the use of proton pump inhibitors. Farmateka, 2014, 14: 62-9
10. Ivashkin VT, Lopina OD. Cellular mechanisms of hydrochloric acid secretion and proton pump inhibitors. In the book: Prevention and treatment of chronic upper gastrointestinal tract diseases. Edited by Acad. of RAMS Ivashkin VT. Revised and additional 2nd ed. М .: MEDPRESS-INFORM, 2013
11. Spicer Z, Miller ML, Andringa A et al. Stomachs of mice lacking the gastric H,K-ATPase α-subunit have achlorhydria, abnormal parietal cells, and ciliated metaplasia. J Biol Chem, 2000, 275: 21555–21565.
12. Isakov VA. Proton pump inhibitors: properties and administration in gas-troenterology. Moscow: Akademkniga, 2001.
13. Asano S, Kawada H, Kimura T et al. The roles of carbohydrate chains of the β-subunit on the functional expression of gastric H+,K+-ATPase. J Biol Chem, 2000, 275: 8324–8330.
14. Heitzmann, D, Warth, R. No potassium, no acid: K+ channels and gastric acid secretion. Physiology, 2007, 22: 335–341.
15. Forte JG, Ly B, Rong QF et al. State of actin in gastric parietal cells. Am J Physiol Cell Physiol, 1998, 274: 97–104.
16. Karvar S, Yao X, Duman JG et al. Intracellular distribution and functional importance of vesicle-associated membrane protein 2 in gastric parietal cells. Gastroenterology, 2002, 123: 281–290.
17. Suda J, Zhu L, Okamoto CT et al. Rab27b local-izes to the tubulovesicle membranes of gastric parietal cells and regulates acid secretion. Gastroenterology, 2011, 140: 868–878.
18. Ding X, Deng H, Wang D et al. Phospho-regulated ACAP4-Ezrin interaction is essential for histamine-stimulated parietal cell secretion. J Biol Chem, 2010, 285: 18769–18780.
19. Schubert ML. Gastric acid secretion. Curr Opin Gastroenterol, 2016, 32(6): 452-460.
20. Chu S, Schubert ML. Gastric secretion. Curr Opin Gastroenterol, 2012, 28: 587-93.
21. He W, Liu W, Chew CS et al. Acid secretion-associated translocation of KCNJ15 in gastric parietal cells. Am J Physiol Gastrointest Liver Physiol, 2011, 301: 591–600.
22. Song P, Groos S, Riederer B et al. Kir4.1 channel expression is essential for parietal cell control of acid secretion. J Biol Chem, 2011, 286: 14120–14128.
23. Kopic S, Murek M, Geibel JP. Revisiting the parietal cell. Am J Physiol Cell Physiol, 2010, 298: C1–C10.
24. Kosiek O, Busque SM, Foller M et al. SLC26A7 Can function as a chlorideloading mechanism in parietal cells. Pflugers Arch Eur J Physiol, 2007, 454: 989–998.
25. McDaniel N, Pace AJ, Spiegel S et al. Role of Na-K-2Cl cotransporter-1 in gastric secretion of nonacidic fluid and pepsinogen. Am J Physiol Gastrointest Liver Physiol, 2005, 289: G550–G560.
26. Rotte A, Pasham V, Mack AF et al. Ca2+ activated K+ channel Kca3.1 as a determinant of gastric acid secretion. Cell Physiol Biochem, 2011, 27: 597–604.
27. Fujii T, Fujita K, Takeguchi N et al. Function of K+-Cl−-cotransporters in the acid secretory mechanism of gastric parietal cells. Biol Pharm Bull, 2011, 34: 810–812.
28. Yao X., Forte J.G. Cell biology of acid secretion by the parietal cell. Annu Rev Physiol, 2003, 65: 103-131.
29. Schubert ML, Peura DA. Control of gastric acid secretion in health and disease. Gastroenterology, 2008 Jun, 134(7): 1842-60.
30. Zhou R, Cao X, Watson C et al. Characterization of protein kinase A-mediated phosphorylation of ezrin in gastric parietal cell activation. J Biol Chem, 2003, 278(37): 35651-9.
31. Vuyyuru, L, Harrington, L, Arimura, A, Schubert, ML. Reciprocal inhibitory paracrine pathways link histamine and somatostatin secretion in the fundus of the stomach. Am J Physiol Gastrointest Liver Physiol, 1997, 273: G106–G111.
32. Kucheryavy YuA, Andreev DN. Perspectives of treatment of patients with acid-dependent diseases. Klin. per-spektivy gastroenterol., gepatol., 2014, 2: 15-24
33. Lassen AT. Acid-related disorders and use of antisecretory medication. Dan Med Bull, 2007, 54(1): 18-30.
34. Maev IV, Andreev DN, Kochetov SA, Dicheva DT. Pharmacological and clinical grounds for application of proton pump inhibitors. In collected works: Current gastroenterology problems. Moscow, November 28, 2012: 38-45.
35. Federal guidelines for proscribing drugs (for-mulary system). 18th Issue. M .: Vidoks, 2017.
36. Andreev DN, Kucheryavyy YuA. Prospects for the treatment of gastroesophageal reflux disease. Gastroenterologiya. Appendix to the Journal Consilium Medicum, 2013, 2: 9-14.
37. Rang HP, Dale MM, Ritter JM, Flower RJ, Henderson G. Rang and Dale’s Pharmacology. Elsevier Churchill Livingstone. 2012.
38. Zaborovskiy AV, Maev IV, Andreev DN, Tararina LA. Pleiotropic effects of rabeprazole and their role in the treatment of patients with acid-dependent diseases. Rosciyskiy Zhurnal Gastroenterologii, Gepatologii, Koloproktologii, 2017, 27 (3): 18-26.
39. Osipenko MF, Lopina OD, Estulin DG. Pleiotropic effects of rabeprazole. RMJ, 2014, 20: 1448-1470.
40. Katzung BG, Masters SB, Trevor AJ. Basic & Clinical Pharmacology, 11e. McGraw-Hill Medical. 2009.
41. Kromer W, Krüger U, Huber R, Hartmann M, Steinijans VW. Differences in pH-dependent activation rates of substituted benzimidazoles and biological in vitro correlates. Pharmacology, 1998, 56(2): 57-70.
42. Besancon M, Simon A, Sachs G, Shin JM. Sites of reaction of the gastric H,K-ATPase with extra-cytoplasmic thiol reagents. J Biol Chem, 1997, 272(36): 22438-46.
43. Pantoflickova D, Dorta G, Jornod P, Ravie M., Blum A. Identification of the characteristics influencing the degree of antisecretory activity of PPIs [abstract]. Gastroenterology, 2000, 118: A5895.
44. Tejura B, Boyce M, Warrington S. Rabeprazole is more potent than esomeprazole in control of gastric pH in healthy volunteers [abstract]. Ninth United European Gastroenterology Week Meeting, Amsterdam, The Netherlands. October 2001.
45. Barnett JL, Robinson M. Optimizing acid-suppression therapy. Manag Care, 2001, 10(10 Suppl): 17-21.
46. Desta ZX, Shin JG, Flockhart DA. Clinical significance of the cytochrome P450 2C19 genetic poly-morphism. Clin. Pharmacokinet., 2002, 41(12): 913– 958. doi: 10.2165/00003088-200241120-00002.
47. Li-Wan-Po A, Girard T, Farndon P, Cooley C, Lithgow J. Pharmacogenetics of CYP2C19: functional and clinical implications of a new variant CYP2C19*17. Br J Clin Pharmacol, 2010, 69(3): 222-30. DOI: 10.1111/j.1365-2125.2009.03578.x.
48. Serrano D, Torrado S, Torrado-Santiago S, Gisbert JP. The influence of CYP2C19 genetic polymorphism on the pharmacokinetics/-pharmacodynamics of proton pump inhibitor-containing Helicobacter pylori treatments. Curr Drug Metab, 2012, 13(9): 1303-12.
49. Chaudhry AS, Kochhar R, Kohli KK. Genetic pol-ymorphism of CYP2C19 & therapeutic response to proton pump inhibitors. Indian J. Med. Res., 2008, 127(6): 521–530.
50. Maev IV, Andreev DN. Molecular-genetic predictors of resistance to anti-Helicobacter therapy. Terapevticheskiy arkhiv, 2017, 89 (8): 5-12.
51. Ichikawa H, Sugimoto M, Sugimoto K, Andoh A, Furuta T. Rapid metabolizer genotype of CYP2C19 is a risk factor of being refractory to proton pump inhibitor therapy for reflux esophagitis. J Gastroenterol Hepatol, 2016, 31(4): 716-26.
52. Kuo CH, Lu CY, Shih HY, Liu CJ, Wu MC, Hu HM, Hsu WH, Yu FJ, Wu DC, Kuo FC. CYP2C19 polymorphism influences Helicobacter pylori eradication. World J Gastroenterol, 2014, 20(43): 16029-36.
53. Padol S, Yuan Y, Thabane M, Padol IT, Hunt RH. The effect of CYP2C19 polymorphisms on H. pylori eradication rate in dual and triple first-line PPI therapies: a meta-analysis. Am J Gastroenterol, 2006, 101(7): 1467-75.
54. Sakai T, Aoyama N, Kita T, Sakaeda T, Nishiguchi K, Nishitora Y, Hohda T, Sirasaka D, Tamura T, Tanigawara Y, Kasuga M, Okumura K. CYP2C19 genotype and pharmacokinetics of three proton pump inhibitors in healthy subjects. Pharm Res, 2001, 18(6): 721-7.
55. Kirchheiner J, Glatt S, Fuhr U, Klotz U, Meineke I, Seufferlein T, Brockmöller J. Relative potency of proton-pump inhibitors-comparison of effects on intra-gastric pH. Eur J Clin Pharmacol, 2009, 65(1): 19-31.
56. Sugimoto M, Shirai N, Nishino M, Kodaira C, Uotani T, Sahara S, Ichikawa H, Kagami T, Sugimoto K, Furuta T. Comparison of acid inhibition with standard dosages of proton pump inhibitors in relation to CYP2C19 genotype in Japanese. Eur J Clin Pharmacol, 2014, 70(9): 1073-8.
Review
For citations:
Maev IV, Andreev DN, Zaborovsky AV. Basics of gastric acid secretion. Meditsinskiy sovet = Medical Council. 2018;(3):7-14. (In Russ.) https://doi.org/10.21518/2079-701X-2018-3-7-14