Preview

Meditsinskiy sovet = Medical Council

Advanced search

Drug-based neuroprotection in acute phase of traumatic brain injury of moderate severity

https://doi.org/10.21518/2079-701X-2015-10-82-92

Abstract

Traumatic brain injury (TBI) is one of the most common types of brain injuries and is one of the major causes of death and disability among the population. The outcomes for people with TBI vary by degree of severity - from functional to severe neurological disorders also requiring correction and affecting the ability to work. Drug neuroprotection is one of the most promising areass in the treatment of patients with TBI. The article discusses the results of the original study of the effectiveness of neuroprotective drug Cerebrolysin in patients with traumatic brain injury of moderate severity.

About the Authors

A. E. Talypov
Research Institute of Emergency Care named after N.V. Sklifosovskiy
Russian Federation


M. Y. Myatchin
Research Institute of Emergency Care named after N.V. Sklifosovskiy
Russian Federation


N. S. Kuksova
Research Institute of Emergency Care named after N.V. Sklifosovskiy
Russian Federation


Y. S. Ioffe
Research Institute of Emergency Care named after N.V. Sklifosovskiy
Russian Federation


A. Y. Kordonskiy
Research Institute of Emergency Care named after N.V. Sklifosovskiy
Russian Federation


References

1. Бэр М. Нейропротекция: модели, механизмы, терапия: пер. с англ. М.: БИНОМ. Лаборатория знаний, 2011. 429 с.

2. Гусев Е.И., Скворцова В.И. Ишемия головного мозга. М.: Медицина, 2000. 328 с.

3. Живолупов С.А., Шапкова Е.Ю., Самарцев И.Н., Юрин А.А. Влияние нейромидина и церебролизина на нейродинамические процессы при травматической болезни головного мозга. Журнал неврологии и психиатрии им. С.С. Корсакова. 2011. 111(4): 31-36.

4. Лебедев В.В., Крылов В.В. Дислокационный синдром при острой нейрохирургической патологии. Нейрохирургия. 2000. 1: 4-11.

5. Островая Т.В., Черний В.И. Церебропротекция в аспекте доказательной медицины. Медицина неотложных состояний. 2007. 2 (9): 48-53.

6. Потапов А.А., Гайтур Э.И. Биомеханика и основные звенья патогенеза черепно-мозговой травмы. Клиническое руководство по черепно-мозговой травме. Под ред. Коновалова А.Н. и соавт. М.: Антидор, 1998. 1: 152-168.

7. Пурас Ю.В., Кордонский А.Ю., Талыпов А.Э. Механизмы эволюции очагов ушиба головного мозга. Нейрохирургия, 2013, 4: 91-96.

8. Пурас Ю.В., Талыпов А.Э.Факторы риска развития неблагоприятного исхода в хирургическом лечении острой черепно-мозговой травмы. Нейрохирургия. 2013. 2: 8-16.

9. Пурас Ю.В., Талыпов А.Э., Крылов В.В. Декомпрессивная трепанация черепа в раннем периоде тяжелой черепно-мозговой травмы. Нейрохирургия. 2011. 3: 19-26.

10. Пурас Ю.В., Талыпов А.Э., Кордонский А.Ю. Механизмы вторичного повреждения мозга и нейротрофическое действие Церебролизина при черепно-мозговой травме. Нейрохирургия. 2012. 4: 94-102.

11. Пурас Ю.В., Талыпов А.Э., Трифонов И.С., Крылов В.В. Судорожный синдром в остром периоде тяжелой черепно-мозговой травмы. Нейрохирургия. 2011. 2: 35-40.

12. Alvarez XA, Lombardi VR, Fernandez-Novoa L et al. Cerebrolysin reduces microglial activation in vivo and in vitro: a potential mechanism of neuroprotection. J Neural Transm Suppl. 2000. 59: 281-292.

13. ВиИсск R, Chesunt R, Clifton G et aL Management and Prognosis of Severe Traumatic Brain Injury Brain Trauma Foundation (c), Vashington, 2000. 116.

14. Devinsky O, Sato S, Conwit RA, Schapiro MB. Relation of EEG alpha background to cognitive function, brain atrophy, and cerebral metabolism in Down's syndrome. Age-specific changes. Arch Neurol. 1990 Jan, 47(1): 58-62.

15. Hartbauer M, Hutter-Paier B, Skofitsch G, Windisch M. Antiapoptotic effects of the peptidergic drug cerebrolysin on primary cultures of embryonic chick cortical neurons. J Neural Transm. 2001. 108(4): 459-473.

16. Jantzen JP. Prevention and treatment of intracranial hypertension. Best Pract Res ClinAnaesthesiol. 2007. 21(4): 517-538.

17. Patel AD, Gerzanich V, Geng Z, Simard JM. Glibenclamide reduces hippocampal injury and preserves rapid spatial learning in a model of traumatic brain injury. J NeuropatholExp Neurol. 2010. 69(12): 1177-1190.

18. Pramming S, Thorsteinsson B, Stigsby B, Binder C. Glycaemic threshold for changes in electroencephalograms during hypoglycaemia in patients with insulin dependent diabetes. Br Med J (Clin Res Ed). 1988 Mar 5, 296(6623): 665-7.

19. Reed AR, Welsh DG. Secondary injury in traumatic brain injury patients - a prospective study. s. Afr. Med. J. 2002. 92: 221-224.

20. Rudolf J, Ghaemi M, Ghaemi M, Haupt WF, Szelies B, Heiss WD. Cerebral glucose metabolism in acute and persistent vegetative state. J Neurosurg Anesthesiol. 1999 Jan, 11(1): 17-24.

21. Sanchez-Arroyos R, Gaztelu JM, Zaplana J, Dajas F, Garcia-Austt E. Hippocampal and entorhinal glucose metabolism in relation to cholinergic theta rhythm. Brain Res Bull. 1993, 32(2): 171-8.

22. Sheridan PH, Sato S, Foster N, Bruno G, Cox C, Fedio P, Chase TN. Relation of EEG alpha background to parietal lobe function in Alzheimer's disease as measured by positron emission tomography and psychometry. Neurology. 1988 May, 38(5): 747-50.

23. Sugita Y, Kondo T, Kanazawa A et al. Protective effect of FPF 1070 (cerebrolysin) on delayed neuronal death in the gerbil-detection of hydroxyl radicals with salicylic acid. No ToShinkei. 1993. 45(4): 325-331.

24. Szelies B, Mielke R, Kessler J, Heiss WD. EEG power changes are related to regional cerebral glucose metabolism in vascular dementia. ClinNeurophysiol. 1999 Apr, 110(4): 615-20.


Review

For citations:


Talypov AE, Myatchin MY, Kuksova NS, Ioffe YS, Kordonskiy AY. Drug-based neuroprotection in acute phase of traumatic brain injury of moderate severity. Meditsinskiy sovet = Medical Council. 2015;(10):82-92. (In Russ.) https://doi.org/10.21518/2079-701X-2015-10-82-92

Views: 500


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)