Preview

Meditsinskiy sovet = Medical Council

Advanced search

The genome-wide analysis of the vitamin D receptor binding sites evidences a wide range of potential therapeutic applications of vitamin D

https://doi.org/10.21518/2079-701X-2016-1-12-21

Abstract

The article presents the results of the genome-wide bioinformatic analysis of the vitamin D receptor interactions with the human genome DNA. Using a biological system assay, biological roles of proteins were analyzed that are specifically associated with the impact of VDR receptor. Systematization of the biological roles of vitamin D opens broad and previously unexplored perspectives for pediatric applications of vitamin D preparations for the prevention and treatment of a wide range of diseases starting from the fetal stage and early childhood.

About the Authors

O. A. Gromova
Ivanovo State Medical Academy
Russian Federation


I. Y. Torshin
Moscow Institute of Physics and Technology
Russian Federation


V. B. Spirichev
Scientific Research Institute of Nutrition
Russian Federation


References

1. Johnson DS, Mortazavi A. Genome-wide mapping of in vivo protein-DNA interactions. Science 2007. 316: 1497-1502.

2. Ramagopalan SV, Heger A, Berlanga AJ, Maugeri NJ, Lincoln MR, Burrell A, Handunnetthi L, Handel AE. A ChlP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution. Genome Res. 2010, 20(10): 1352-60.

3. Heikkinen S, Vaisanen S, Pehkonen P, Seuter S, Benes V, Carlberg C. Nuclear hormone 1alpha,25-dihydroxyvitamin D3 elicits a genome-wide shift in the locations of VDR chromatin occupancy. Nucleic Acids Res. 2011, 39(21): 9181-93.

4. Ding N, Yu RT, Subramaniam N, Sherman MH, Wilson C, Rao R, Leblanc M. A vitamin D recep-tor/SMAD genomic circuit gates hepatic fibrotic response. Cell. 2013, 153(3): 601-13.

5. Torshin lYu. Sensing the change from molecular genetics to personalized medicine. Nova Biomedical Books, NY, USA, 2009, In Bioinformatics in the Post-Genomic Era series, lSBN 1-60692-217-0.

6. Громова ОА., Торшин И.Ю., Лиманова О.А., Гришина Т.Р., Громов А.Н. Обеспеченность витамином D и метаболические нарушения: систематический анализ фундаментальных и доказательных исследований по проблемам избыточной массы тела и сахарного диабета. Фарматека, 2014 (20): 27-38.

7. Garten A, Schuster S, Kiess W. The insulin-like growth factors in adipogenesis and obesity. Endocrinol Metab Clin North Am. 2012, 41(2): 283-95.

8. Conover CA, Mason MA, Bale LK, Harrington SC, Nyegaard M, Oxvig C, Overgaard MT. Transgenic overexpression of pregnancy-associated plasma protein-A in murine arterial smooth muscle accelerates atherosclerotic lesion development. Am J Physiol Heart Circ Physiol. 2010, 299(2): H284-91.

9. Boldt HB, Bale LK, Resch ZT, Oxvig C, Overgaard MT, Conover CA. Effects of mutated pregnancy-associated plasma protein-a on atherosclerotic lesion development in mice. Endocrinology. 2013, 154(1): 246-52.

10. Moursi AM, Winnard PL, Winnard AV, Rubenstrunk JM, Mooney MP. Fibroblast growth factor 2 induces increased calvarial osteoblast proliferation and cranial suture fusion. Cleft Palate CraniofacJ. 2002, 39(5): 487-496.

11. Zhang X, Ibrahimi OA, Olsen SK. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem. 2006, 281(23): 15694-700.

12. Lee JG, Kay EP. FGF-2-induced wound healing in corneal endothelial cells requires Cdc42 activation and Rho inactivation through the phosphatidylinositol 3-kinase pathway. Invest Ophthalmol Vis Sci. 2006, 47(4): 1376-1386.

13. Lin A, Hokugo A, Choi J, Nishimura I. Small cytoskeleton-associated molecule, fibroblast growth factor receptor 1 oncogene partner 2/ wound inducible transcript-3.0 (FGFR1OP2/ wit3.0), facilitates fibroblast-driven wound closure. Am J Pathol. 2010, 176(1): 108-21.

14. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011, 96(7): 1911-30.

15. Oyama N, Iwatsuki K, Satoh M, Akiba H, Kaneko F. Dermal fibroblasts are one of the therapeutic targets for topical application of 1alpha,25-dihydroxyvitamin D3: the possible involvement of transforming growth factor-beta induction. Br J Dermatol. 2000, 143(6): 1140-1148.

16. Inoue K, Aoi N, Yamauchi Y, Sato T, Suga H, Eto H, Kato H, Tabata Y, Yoshimura K. TGF-beta is specifically expressed in human dermal papilla cells and modulates hair folliculogenesis. J Cell Mol Med. 2009, 13(11-12): 4643-56.

17. Kinoshita A, Fukumaki Y, Shirahama S, Miyahara A, Nishimura G. TGFB1 mutations in four new families with Camurati-Engelmann disease: confirmation of independently arising LAP-domain-specific mutations. Am J Med Genet A. 2004, 127A(1): 104-107.

18. Loeys BL. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005, 37(3): 275-81.

19. Luderer HF, Nazarian RM, Zhu ED, Demay MB. Ligand-dependent actions of the vitamin D receptor are required for activation of TGF-beta signaling during the inflammatory response to cutaneous injury. Endocrinology. 2013, 154(1): 16-24.

20. Szeto FL, Sun J, Kong J, Duan Y. Involvement of the vitamin D receptor in the regulation of NF-kappaB activity in fibroblasts. J Steroid Biochem Mol Biol. 2007, 103(3-5): 563-6.

21. Reinholz M, Schauber J. [Vitamin D and innate immunity of the skin]. Dtsch Med Wochenschr. 2012, 137(46): 2385-9.

22. Segaert S. Vitamin D regulation of cathelicidin in the skin: toward a renaissance of vitamin D in dermatology? J Invest Dermatol. 2008, 128(4): 773-5.

23. Muehleisen B, Bikle DD, Aguilera C, Burton DW, Sen GL, Deftos LI, Gallo RL. PTH/PTHrP and vitamin D control antimicrobial peptide expression and susceptibility to bacterial skin infection. Sci Transl Med. 2012, 4(135): 135ra66.

24. Burkiewicz CJ, Guadagnin FA, Skare TL, do Nascimento MM, Servin SC, de Souza GD. Vitamin D and skin repair: a prospective, double-blind and placebo controlled study in the healing of leg ulcers. Rev Col Bras Cir. 2012, 39(5): 401-407.

25. Bashutski JD, Eber RM, Kinney JS, Benavides E, Maitra S, Braun TM, Giannobile WV, McCauley LK. The impact of vitamin D status on perio-dontal surgery outcomes. J Dent Res. 2011, 90(8): 1007-12.

26. Захарова И.Н., Мальцев С.В., Боровик Т.Э. с соавт. Недостаточность витамина D у детей раннего возраста в России (результаты многоцентрового исследования - зима 20132014 гг.). Педиатрия им. ГН. Сперанского. 2014, 93 (2): 75-80.

27. Торшин И.Ю., Громова О.А., Лиманова О.А. и др. Обеспеченность витамином D детей и подростков 7-14 лет и взаимосвязь дефицита витамина D с нарушениями здоровья детей. Анализ крупномасштабной выборки пациентов посредством интеллектуального анализа данных. Педиатрия им. ГН. Сперанского, 2015, 94 (2): 175-184.

28. Описание Аквадетрим. Энциклопедия РЛС http: //www.rlsnet.ru/tn_index_id_24362.htm.

29. Громова О.А., Торшин И.Ю., Захарова И.Н. и др. О дозировании витамина D у детей и подростков. Вопросы современной педиатрии, 2015, 14(1): 38-47.


Review

For citations:


Gromova  OA, Torshin  IY, Spirichev  VB. The genome-wide analysis of the vitamin D receptor binding sites evidences a wide range of potential therapeutic applications of vitamin D. Meditsinskiy sovet = Medical Council. 2016;1(1):12-21. (In Russ.) https://doi.org/10.21518/2079-701X-2016-1-12-21

Views: 978


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)