Influence of functional ingredients of baby food on immunity
https://doi.org/10.21518/2079-701X-2019-17-37-44
Abstract
In order to prevent the development of chronic diseases, including cardiovascular diseases, overweight and obesity, diabetes mellitus, cancer and allergic pathology, it is necessary to adhere to a balanced diet from an early age, with the inclusion of functional ingredients, including dietary fiber, vitamins and vitamin-like compounds, minerals, polyunsaturated fatty acids, prebiotics and probiotics. Combined enrichment of dairy products with prebiotics and probiotics helps to combine their positive and effective impacts. There has been an improvement in the survival of probiotic microorganisms in the gastrointestinal tract (GIT). It has been shown that the addition of prebiotics and probiotics to the diet helps to change the composition of the intestinal microbiota towards a more balanced structure, thereby increasing the barrier function of the intestine and the formation of optimal immune interactions. The general effects of prebiotics and probiotics include maintaining homeostasis and integrity of the intestinal mucosa, providing colonization potential for pathogens, production of short-chain fatty acids and vitamins, metabolism of bile acids, regulation of transit through the gastrointestinal tract, and increased regeneration of enterocytes. The combination of bifidobacteria or lactobacteria with fructo-oligosaccharides in symbiotic products is most commonly used in human nutrition. In our study, patients aged 8 to 18 months, reconvalescents of acute respiratory disease for which antibacterial therapy was prescribed, included in their diet for 3 months drinking yoghurts enriched with Bifidobacterium Lactis BB12 and inulin. Inclusion of yoghurt in the diet of children contributed to the normalization of intestinal microbiota composition after antibacterial therapy, as well as strengthening immunity by stimulating the synthesis of protective factors secretory immunoglobulin A and lysozyme.
About the Authors
О. N. KomarovaRussian Federation
Oksana N. Komarova, Cand. of Sci. (Med), Senior Researcher of the Gastroenterology Department
2, Taldomskaya Str., Moscow, 125412
A. I. Khavkin
Russian Federation
Anatoliy I. Khavkin, Dr. of Sci. (Med), Professor, Head of Gastroenterology Department
2, Taldomskaya Str., Moscow, 125412
References
1. Cencic A., Chingwaru W. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients. 2010;2:611–625. doi: 10.3390/nu2060611.
2. Anadon A., Martinez-Larrańaga M.R., Martinez M.A. Probiotics for animal nutrition in the European Union. Regulation and safety assessment. Regul Toxicol Pharmacol. 2006;45:91–95. doi: 10.1016/j.yrtph.2006.02.004.
3. Gaggia F., Mattarelli P., Biavati B. Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol. 2010;141:15–28. doi: 10.1016/j.ijfoodmicro.2010.02.031.
4. Schachtsiek M., Hammes W.P., Hertel C. Characterization of Lactobacillus coryniformis DSM 20001T surface protein CPF mediating coaggregation with and aggregation among pathogens. Appl Environ Microbiol. 2004;70:7078–7085. doi: 10.1128/AEM.70.12.7078-7085.2004.
5. Oelschlaeger T.A. Mechanisms of probiotic actions – A review. Int J Med Microbiol. 2010;300:57–62. doi: 10.1016/j.ijmm.2009.08.005.
6. Collado M.C., Meriluoto J., Salminen S. Role of commercial probiotic strains against human path-ogen adhesion to intestinal mucus. Lett Appl Microbiol. 2007;45:454-460. doi:10.1111/j.1472-765X.2007.02212.x.
7. Martins F.S., Silva A.A., Vieira A.T., Barbosa F.H., Arantes R.M., Teixeira M.M. Comparative study of Bifidobacterium animalis, Escherichia coli, Lactobacillus casei and Saccharomyces boulardii probiotic properties. Arch Microbiol. 2009;191:623-630. doi:10.1007/s00203-0090491-x.
8. Begley M., Hill C., Gahan C.G.M. Bile salt hydrolase activity in probiotics. Appl Environ Microbiol. 2006;72:1729–1738. doi: 10.1128/AEM.72.3.1729-1738.2006.
9. Juntunen M., Kirjavainen P.V., Ouwehand A.C., Salminen S.J., Isolauri E. Adherence of probiotic bacteria to human intestinal mucus in healthy infants and during rotavirus infection. Clin Diagn Lab Immunol. 2001;8(2):293-296. doi:10.1128/CDLI.8.2.293-296.2001.
10. Cremonini F., di Caro S., Nista E.C., Bartolozzi F., Capelli G., Gasbarrini G., Gasbarrini A. Metaanalysis: The eqect of probiotic administration on antibiotic associateddiarrhoea. Aliment Pharmacol Ther. 2002;16:1461–1467. doi: 10.1046/j.1365-2036.2002.01318.
11. Johnston B.C., Supina A.L., Vohra S. Probiotics for pediatric antibiotic-associated diarrhea: A meta-analysis of randomized placebo-controlled trials. CMAJ. 2006;175(4):377-383. doi: 10.1503/cmaj.051603.
12. Sheu B.S., Wu J.J., Lo C.Y., Wu H.W., Chen J.H., Lin Y.S. et al. Impact of supplement with Lactobacillusand Bifidobacterium-containing yogurt on triple therapy for Helicobacter pylori eradication. Aliment Pharmacol Ther. 2002;16:1669-1675. doi: 10.1046/j.1365-2036.2002.01335.x.
13. Zhang Z., Hinrichs D.J., Lu H., Chen H., Zhong W., Kolls J.K. After interleukin-12p40, are interleukin23 and interleukin-17 the next therapeutic targets for inflammatory bowel disease? Int Immunopharmacol. 2007;7(4):409–16. doi: 10.1016/j.intimp.2006.09.024.
14. Rakoff-Nahoum S., Paglino J., Eslami-Varzaneh F., Edberg S., Medzhitov R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell. 2004;118:229–241. doi: 10.1016/j.cell.2004.07.002.
15. Akbari O., DeKruyff R.H., Umetsu D.T. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol. 2001;2(8):725–731. DOI: 10.1038/90667.
16. Iwasaki A., Kelsall B.L. Freshly isolated Peyer’s patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J Exp Med. 1999;190(2):229–240. doi: 10.1084/jem.190.2.229.
17. Williamson E., Bilsborough J.M., Viney J.L. Regulation of mucosal dendritic cell function by receptor activator of NF-κB (RANK)/RANK ligand interactions: impact on tolerance induction. J Immunol. 2002;169(7):3606-3612. doi: 10.4049/jimmunol.169.7.3606.
18. Smits H.H., Engering A., van der Kleij D., Schipper K., van Capel T.M., Zaat B.A., Yazdanbakhsh M., Wierenga E.A., van Kooyk Y., Kapsenberg M.L. Selective probiotic bacteria induce IL-10–producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell–specific intercellular adhesion molecule 3–grabbing nonintegrin. J Allergy Clin Immunol. 2005;115:1260–1267. doi: 10.1016/j.jaci.2005.03.036
19. Lopez P., Gueimonde M., Margolles A., Suarez A. Distinct Bifidobacterium strains drive different immune responses in vitro. Int J Food Microbiol. 2010;138:157-165. doi: 10.1016/j.ijfoodmicro.2009.12.023.
20. Taipale T., Pienihakkinen K., Isolauri E., Larsen C., Brockmann E., Alanen P. et al. Bifidobacterium animalis subsp. lactis BB-12 in reducing the risk of infections in infancy. Br J Nutr. 2011;105:409-416. doi: 10.1017/S0007114510003685.
21. Rautava S., Salminen S., Isolauri E. Specific probiotics in reducing the risk of acute infections in infancy-a randomised, double-blind, placebocontrolled study. Br J Nutr. 2009;101:17221726. doi: 10.1017/S0007114508116282.
22. Parvez S., Malik K.A., Ah Kang S., Kim H.Y. Probiotics and their fermented food products are beneficial for health. J Appl Microbiol. 2006;100:1171–1185. doi: 10.1111/j.1365-2672.2006.02963.x.
23. Macpherson A.J., Geuking M.B., McCoy K.D. Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria. Immunology. 2005;115(2):153–162. doi: 10.1111/j.1365-2567.2005.02159.x.
24. Shulzhenko N., Morgun A., Hsiao W., Battle M., Yao M., Gavrilova O., Orandle M., Mayer L., Macpherson A.J., McCoy K.D., Fraser-Liggett C., Matzinger P. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nat Med. 2011;20;17(12):1585-1593. doi: 10.1038/nm.2505.
25. Cummings J.H., Macfarlane G.T. Gastrointestinal effects of prebiotics. Br. J. Nutr. 2002;87:145– 151. doi: 10.1079/BJNBJN/2002530.
26. Khavkin A.I., Fedotova O.B., Volynets G.V., Koshkarova Y.A., Penkina N.A., Komarova O.N. The results of a prospective comparative openlabel randomised study of the effectiveness of a probioticand prebiotic-fortified yogurt in small children after an acute respiratory infection. Voprosy detskoy dietologii = Pediatric Nutrition. 2019;17(1):29-37. doi: 10.20953/17275784-2019-1-29-37.
27. Olivares M., Diaz-Ropero M.P., Gomez N., LaraVilloslada F., Sierra S., Maldonado J.A., Martin R., Rodriguez J.M., Xaus J. The consumption of two new probiotic strains, Lactobacillus gasseri CECT 5714 and Lactobacillus coryniformis CECT 5711, boosts the immune system of healthy humans. Int Microbiol. 2006;9(1):47-52. Available at: https://www.ncbi.nlm.nih.gov/pubmed/16636989.
28. De Vrese M., Schrezenmeir J. Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol. 2008;111:1–66. doi: 10.1007/10_2008_097.
29. Sekhon B.S., Jairath S. Prebiotics, probiotics and synbiotics: An overview. J Pharm Educ Res. 2010;1:13–36. Available at: https://search.proquest.com/openview/53599b109a04017d8abeaa288afbab1b/1?pqorigsite=gscholar&cbl=276246.
30. Skalkam M.L., Wiese M., Nielsen D.S., van Zanten G. Chapter 33 – In Vitro Screening and Evaluation of Synbiotics. Probiotics, Prebiotics, and Synbiotics. Bioactive Foods in Health Promotion. Elsevier. 2016;477–486. doi: 10.1016/B978-0-12-802189-7.00033-2.
31. Sabater-Molina M., Larque E., Torrella F., Zamora S. Dietary fructooligosaccharides and potential benefits on health. J Physiol Biochem. 2009;65:315–328. doi: 10.1007/BF03180584.
32. Cantarel B.L., Lombard V., Henrissat B., Hu Y., Walker S., Laine R., Varki A., Sharon N., Varki A., Hooper L. et al. Complex carbohydrate utilization by the healthy human microbiome. PLoS One. 2012;7:e28742. doi: 10.1371/journal.pone.0028742.
33. Alvaro E., Andrieux C., Rochet V., Rigottier-Gois L., Leprcq P., Sutren M., Galan P., Duval Y., Juste C., Dore J. Composition and metabolism of the intestinal microbiota in consumers and nonconsumers of yogurt. Br J Nutr. 2007;97:126– 133. doi: 10.1017/S0007114507243065.
34. Scott K.P., Martin J.C., Duncan S.H., Flint H.J. Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. FEMS Microbiol Ecol. 2013;87:30-40. doi: 10.1111/1574-6941.12186.
35. Martens E.C., Lowe E.C., Chiang H., Pudlo N.A., Wu M., McNulty N.P., Abbott D.W., Henrissat B., Gilbert H.J., Bolam D.N. et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 2011;9:e1001221. doi: 10.1371/journal.pbio.1001221.
36. Simpson H.L., Campbell B.J. Review article: dietary fibre–microbiota interactions. Aliment Pharmacol Ther. 2015;42(2):158–179. doi: 10.1111/apt.13248.
37. Cummings J.H., Pomare E.W., Branch H.W.J., Naylor E., Macfarlane G.T. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28:1221-1227. doi: 10.1136/gut.28.10.1221.
38. Lupton J.R. Microbial degradation products influence colon cancer risk: The butyrate controversy. J. Nutr. 2004;134:479–482. doi: 10.1093/jn/134.2.479.
39. Yano J.M., Yu K., Donaldson G.P., Shastri G.G., Ann P., Ma L., Nagler C.R., Ismagilov R.F., Mazmanian S.K., Hsiao E.Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161:264–276. doi: 10.1016/j.cell.2015.02.047.
40. Galley J.D., Nelson M.C., Yu Z., Dowd S.E., Walter J., Kumar P.S., Lyte M., Bailey M.T. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated Microbiota. BMC Microbial. 2014;14:189. doi: 10.1186/1471-2180-14-189.
41. Ramirez-Farias C., Slezak K., Fuller Z., Duncan A., Holtrop G., Louis P. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr. 2009;101:541-550. doi: 10.1017/S0007114508019880.
42. Holscher H.D., Bauer L.L., Vishnupriya G., Pelkman C.L., Fahey G.C., Swanson K.S., Gourineni V., Pelkman C.L., Fahey G.C. Jr, Swanson K.S. Agave inulin supplementation affects the fecal microbiota of healthy adults participating in a randomized, double-blind, placebo-controlled, crossover trial. J Nutr. 2015;145:2025-2032. doi: 10.3945/jn.115.217331.
43. Louis P., Flint H.J., Michel C. How to Manipulate the Microbiota: Prebiotics. Adv Exp Med Bio. 2016;902:119-142. doi: 10.1007/978-3-31931248-4_9.
44. Walker A.W., Ince J., Duncan S.H., Webster L.M., Holtrop G., Ze X., Brown D., Stares M.D., Scott P., Bergerat A., et al. Louis P., McIntosh F., Johnstone A.M., Lobley G. E., Parkhill J., Flint H.J. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2010;5:220-230. doi: 10.1038/ismej.2010.118.
45. Morrow A.L., Ruiz-Palacios G.M., Altaye M., Jiang X., Guerrero M.L., Meinzen-Derr J.K., Farkas T., Chaturvedi P., Pickering L.K., Newburg D.S. Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. J Pediatr. 2004;145:297–303. doi: 10.1016/j.jpeds.2004.04.054.
46. Rabinovich G.A., van Kooyk Y., Cobb B.A. Glycobiology of immune responses. Ann N Y Acad Sci. 2012;1253:1-15. doi: 10.1111/j.1749-6632.2012.06492.x.
47. Bode L. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology. 2012;22(9):1147–1162. doi: 10.1093/glycob/cws074.
48. Sivaprakasam S., Prasad P.D., Singh N. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol Ther. 2016;164:144–151. doi: 10.1016/j.pharmthera.2016.04.007.
49. Clarke S.F., Murphy E.F., Nilaweera K., Ross P.R., Shanahan F., O’Toole P.W., Cotter P.D. The gut microbiota and its relationship to diet and obesity: new insights. Gut Microbes. 2012;3(3):186–202.
50. Pandey K.R., Naik S.R., Vakil B.V. Probiotics, prebiotics and synbioticsa review. J Food Sci Technol. 2015;52(12):7577–7587. doi: 10.1007/s13197-015-1921-1.
51. Dilli D., Aydin B., Fettah N.D., Ozyazıcı E., Beken S., Zenciroğlu A., Okumuş N., Ozyurt B.M., İpek M.Ş., Akdağ A., Turan O., Bozdağ Ş. The ProPreSave Study: effects of probiotics and prebiotics alone or combined on necrotizing enterocolitis in very low birth weight infants. J Pediatr. 2015;166:545–551. doi: 10.1016/j.jpeds.2014.12.004.
52. Islek A., Sayar E., Yilmaz A., Baysan B.O., Mutlu D., Artan R. The role of Bifidobacterium lactis B94 plus inulin in the treatment of acute infectious diarrhea in children. Turkish J Gastroenterol. 2014;25:628–633. doi: 10.5152/tjg.2014.14022.
53. Lei W.T., Shih P.C., Liu S.J., Lin C.Y., Yeh T.L. Effect of Probiotics and Prebiotics on Immune Response to Influenza Vaccination in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients. 2017;9(11):1175. doi: 10.3390/nu9111175.
54. Nagafuchi S., Yamaji T., Kawashima A., Saito Y., Takahashi T., Yamamoto T., Maruyama M., Akatsu H. Effects of a formula containing two types of prebiotics, bifidogenic growth stimulator and galacto-oligosaccharide, and fermented milk products on intestinal microbiota and antibody response to influenza vaccine in elderly patients: A randomized controlled trial. Pharmaceuticals (Basel). 2015;8:351–365. doi: 10.3390/ph8020351.
Review
For citations:
Komarova ОN, Khavkin AI. Influence of functional ingredients of baby food on immunity. Meditsinskiy sovet = Medical Council. 2019;(17):37-44. (In Russ.) https://doi.org/10.21518/2079-701X-2019-17-37-44