Preview

Meditsinskiy sovet = Medical Council

Advanced search

Organoprotective effects of glucagon-like peptide-1 receptor agonists with regard to findings of evidencebased cardiovascular safety studies

https://doi.org/10.21518/2079-701X-2019-21-189-197

Abstract

The article discusses the potential opportunities for impact of antidiabetic drugs from the group of glucagon-like peptide-1 (GLP- 1) receptor agonists on the risks of development and progression of cardiovascular complications in patients with type 2 diabetes mellitus (T2DM) and their possible role in increasing the patients’ expectancy and quality of life. The existing differences between the drugs of this class should be taken into account in using personalized approach to therapy, developing and introducing new guidelines for specialized medical care for patients with type 2 diabetes into clinical practice. The article presented data on the efficacy and safety of the use of GLP-1 receptor agonists and discusses data on the possible mechanisms of non-glycemic effects underlying their cardio and nephroprotection. The features of pharmacological characteristics affecting the clinical efficacy and development of side effects are considered. The article also provides data from randomized clinical trials of various GLP-1 receptor agonists that demonstrate the positive effect of drugs of this class on cardiovascular and nephrological outcomes in patients with type 2 diabetes.

About the Authors

Yu. Sh. Khalimov
Military Medical Academy named after S.M. Kirov
Russian Federation

Yuriy Sh. Khalimov, Dr. of Sci. (Med.), Head of Chair for Military Field Therapy

6, Lebedeva St., Saint Petersburg, 194044, Russia



V. G. Kuzmich
Military Medical Academy named after S.M. Kirov
Russian Federation

Vladimir G. Kuzmich, Dr. of Sci. (Med.), Associate Professor of Chair for Military Field Therapy

6, Lebedeva St., Saint Petersburg, 194044, Russia



References

1. Dedov I.I., Shestakova M.V., Vikulova O.K. et al. Diabetes mellitus in Russian Federation: prevalence, morbidity, mortality, parameters of glycaemic control and structure of glucose lowering therapy according to the Federal Diabetes Register, status 2017. Diabetes mellitus. 2018;21(3): 144-159. (In Russ.) doi: 10.14341/DM9686.

2. Shlyakhto Е.V., Shestakova M.V. Cardiovascular death risk reduction in type 2 diabetes patients with confirmed cardiovascular diseases. Russian Journal of Cardiology. 2018;(9):58-64. (In Russ.) doi: 10.15829/1560-4071-2018-9-58-64.

3. Htay T., Soe K., Lopez-Perez A., Doan A.H., Romagosa M.A., Aung K. Mortality and Cardiovascular Disease in Type 1 and Type 2 Diabetes. Current Cardiology Reports. 2019;21(6):45. doi: 10.1007/s11886-019-1133-9.

4. Nikonova L.V., Doroshkevich I.P. Physiological effects of incretins in type 2 diabetes. Zhurnal Grodnenskogo gosudarstvennogo meditsinskogo universiteta = Journal of the Grodno State Medical University. 2013;(1):18-21. (In Russ.) Available at: http://elib.grsmu.by/handle/files/4037.

5. Moore B., Edie E., Abram J. On the treatment of diabetes mellitus by acid extract of duodenal mucosa membrane. Biochem J. 1906;1(1):28–38. doi: 10.1042/bj0010028.

6. Brown J., Dryburgh J. A gastric inhibitory polypeptide. II. The complete amino acid sequence. Can J Biochem. 1971;49(8):867–872. doi: 10.1139/o71-122.

7. Baggio L.L., Drucker D.J. Biology of incretins: GLP‐1 and GIP. Gastroenterology. 2007;132(6):2131‐2157. doi: 10.1053/j.gastro.2007.03.054.

8. Vilsbøll T., Holst J.J. Incretins, insulin secretion and type 2 diabetes mellitus. Diabetologia. 2004;47(3):357-366. doi: 10.1007/s00125-004-1342-6.

9. Hare K.J., Knop F.K., Asmar M. et al. Preserved inhibitory potency of GLP‐1 on glucagon secretion in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2009;94(12):4679–4687. doi: 10.1210/jc.2009-0921.

10. Holst J.J. On the physiology of GIP and GLP‐1. Horm Metab Res. 2004;36(11-12):747‐754. doi: 10.1055/s-2004-826158. 11. Nauck M.A., Heimesaat M.M., Ørskov C. et al. Preserved incretin activity of glucagon‐like peptide 1 [7‐36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type‐2 diabetes mellitus. J Clin Invest. 1993;91(1):301–307. doi: 10.1172/JCI116186.

11. Elrick H., Stimmler L., Hlad Jr C.J., Arai Y. Plasma insulin responses to oral and intravenous glucose administration. J Clin Endocrinol Metab. 1964;(24):1076–1082. doi: 10.1210/jcem-24-10-1076.

12. Gault V.A., O’Harte F.P., Harriott P. et al. Effects of the novel (Pro3)GIP antagonist and exendin(9‐39)amide on GIP‐ and GLP‐1‐ induced cyclic AMP generation, insulin secretion and postprandial insulin release in obese diabetic (ob/ob) mice: evidence that GIP is the major physiological incretin. Diabetologia. 2003;46(2):222‐230. doi: 10.1007/s00125-002-1028-x.

13. Kim W., Egan J. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev. 2008;60(4):470-512. doi: 10.1124/pr.108.000604.

14. Bulotta A., Farilla L., Hui H. et al. The role of GLP-1 in the regulation of islet cell mass. Cell Biochem Biophys. 2004;(40):65–77. doi:10.1385/CBB:40:3:65.

15. Shu L., Matveyenko A.V., Kerr-Conte J., Cho J.H., McIntosh C.H., Maedler K. Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP- and GLP-1 receptors and impaired beta-cell function. Hum Mol Genet. 2009;18(13):2388-2399. doi: 10.1093/hmg/ddp178.

16. Ametov A.S., Karpova E.V. A new opportunity to achieve the treatment goal in patients with type 2 diabetes. Mezhdunarodnyy ehndokrinologicheskiy zhurnal = International journal of endocrinology. 2011;8(40):10-15. (In Russ.) Available at: http://www.mif-ua.com/archive/article/25195.

17. Uul Z., Yada T. GLP-1 receptor agonist liraglutide exerts central action to induce β-cell proliferation through medulla to vagal pathway in mice. Biochem Biophys Res Commun. 2018;499(3):618-625. doi: 10.1016/j.bbrc.2018.03.199.

18. Raufman J.P. Bioactive peptides from lizard venoms. Regulatory Peptides. 1996;61(1):1–18. doi: 10.1016/0167-0115(96)00135-8.

19. Madsbad S., Kielgast U., Asmar M., Deacon C.F., Torekov S.S., Holst J.J. An overview of onceweekly glucagon-like peptide-1 receptor agonists– available efficacy and safety data and perspectives for the future. Diabetes Obes Metab. 2011;13(5):394-407. doi: 10.1111/j.1463-1326.2011.01357.x.

20. Davies M.J., D’Alessio D.A., Fradkin J. et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2018;61(12):2461-2498. doi: 10.1007/s00125-018-4729-5.

21. Marso S.P., Daniels G.H., Brown-Frandsen K., et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2016;(375):311-322. doi: 10.1056/NEJMoa1603827.

22. Drucker D.J. Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metabolism. 2018;27(4):740-756. doi: 10.1016/j.cmet.2018.03.001.

23. Lim S., Kim K.M., Nauck M.A. Glucagon-like Peptide-1 Receptor Agonists and Cardiovascular Events: Class Effects versus Individual Patterns. Trends in Endocrinology & Metabolism. 2018;29(4):238-248. doi: 10.1016/j.tem.2018.01.011.

24. Marso S.P., Bain S.C., Consoli A., et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2016;375(19):1834-1844. doi: 10.1056/NEJMoa1607141.

25. Holman R.R., Bethel M.A., Mentz R.J., Thompson V.P., Lokhnygina Y., Buse J.B., et al. EXSCEL Study Group. Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2017;377(13):1228-1239. doi: 10.1056/NEJMoa1612917.

26. Hernandez A.F., Green J.B., Janmohamed S., D’Agostino R.B. Sr., Granger C.B., Jones N.P., et al; Harmony Outcomes committees and investigators. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet. 2018;392(10157):1519–1529. doi: 10.1016/S0140-6736(18)32261-X.

27. Seferovic J.P., Bentley-Lewis R., Claggett B., Diaz R., Gerstein H.C., Kober L.V. et al. Retinopathy, neuropathy, and subsequent cardiovascular events in patients with Type 2 diabetes and acute coronary syndrome in the ELIXA: the importance of disease duration. J Diabet Res. 2018:1631263. doi: 10.1155/2018/1631263.

28. Gerstein H.C., Colhoun H.M., Dagenais G.R., et al. REWIND Trial Investigators. Design and baseline characteristics of participants in the Researching cardiovascular Events with a Weekly INcretin in Diabetes (REWIND) trial on the cardiovascular effects of dulaglutide. Diabetes Obes Metab. 2018;20(1):42-49. doi: 10.1111/dom.13028.

29. Kugler A.J., Thiman M.L. Efficacy and safety profile of once-weekly dulaglutide in type 2 diabetes: a report on the emerging new data. Diabetes Metab Syndr Obes. 2018;(11):187-197. doi: 10.2147/DMSO.S134960.

30. Gerstein H.C., Colhoun H.M., Dagenais G.R., Diaz R., Pais P. et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double- blind, randomised placebo-controlled trial. The Lancet. 2019;394(10193):121-130. doi: 10.1016/S0140-6736(19)31149-3.

31. Gerstein H.C., Colhoun H.M., Dagenais G.R., Diaz R., Pais P. et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. The Lancet. 2019;394(10193):131-138. doi: 10.1016/S0140-6736(19)31150-X.


Review

For citations:


Khalimov YS, Kuzmich VG. Organoprotective effects of glucagon-like peptide-1 receptor agonists with regard to findings of evidencebased cardiovascular safety studies. Meditsinskiy sovet = Medical Council. 2019;(21):189-197. (In Russ.) https://doi.org/10.21518/2079-701X-2019-21-189-197

Views: 710


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)