Vitamin D and defensins production in infants
https://doi.org/10.21518/2079-701X-2020-1-158-169
Abstract
Relevance: immunotropic effects of cholecalciferol are caused by vitamin-D-induced synthesis of antimicrobial peptides (AMP), in particular р-defensins. There are very few studies in pediatric clinical practice confirming the effect of vitamin D availability on AMP synthesis.
Aim: analysis of the correlation between vitamin D availability and AMP production and assessment of the effect of cholecalciferol medication intake on defensin synthesis in young children.
Materials and methods: 108 healthy children aged 1 month to 3 years were examined, of which 34 (31.5%) were adequately provided with vitamin D (calcidiol level over 30 ng/ml), 40 (37.0%) with insufficiency (20 to 30 ng/ml), 27 (25.0%) with vitamin D deficiency (10 to 20 ng/ml) and 7 (6.5%) with severe deficit (less than 10 ng/ml). In the presence of hypovitaminose of vitamin D the monthly course of cholecalciferol in doses of 2000-4000 lU/day was prescribed for correction, and in normal provision -prophylactic administration of 1000 IU/day. The indices of 25(ON)D, β1- and β2-defensins were determined three times.
Results. On natural feeding, the rates of β1-defensin are 2.3 times (p<0.05) and β2-defensin 7.5 times (p<0.001) higher than those of children on artificial feeding.
Against the background of the correction course, the level of β1-dephensin increased from 3.3 [2.24-5.85] pg/ml to 3.7 [2.25-6.32] pg/ml (p = 0.05), and β2-dephensin from 240.7 [86.77-686.64] pg/ml to 514.2 [468.19-1104.98] pg/ml (р<0.001). The treatment doses of cholecalciferol contributed to a more significant increase of β1- and β2-defensin; a direct correlation relationship (r = 0.34, p<0.05) was found between the daily dose of vitamin D and the increase of β2-defensin.
Reception of the prophylactic dose of cholecalcipherol of 1000 lU/day during 6 months was accompanied by further increase of AMP production - the level of β1-defensin increased 2.4 times (р<0,001), and the level of β2-defensin - 2.5 times (р<0,001) in comparison with the initial values.
Conclusions. Administration of cholecalcipherol preparations in children of early age is accompanied by an increase in the level of в-defensins - the most important factors of congenital immunity.
About the Authors
I. N. ZakharovaRussian Federation
Irina N. Zakharova - Dr. of Sci. (Med), Professor, Honoured Doctor of the Russian Federation, Head of the Department of Pediatrics with the course of polyclinic pediatrics named after G.N. Speransky.
bld. 1, 2/1, Barrikadnaya St., Moscow, 125993
A. N. Tsutsayeva
Russian Federation
Anna N. TSutsayeva - assistant of the Department of Faculty Pediatrics.
310, Mira St., Stavropol, 355017L. Ya. Klimov
Russian Federation
Leonid YA. Klimov - Cand. of Sci. (Med), assistant professorhead of the department of pediatrics.
310, Mira St., Stavropol, 355017
V. A. Kur'yaninova
Russian Federation
Viktoriya A. Kur’yaninova - Cand. of Sci. (Med), assistant professor of the Department of Propaedeutics of Children's Diseases.
310, Mira St., Stavropol, 355017
S. V. Dolbnya
Russian Federation
Svetlana V. Dolbnya - Cand. of Sci. (Med), assistant professor of the Department of Pediatrics.
310, Mira St., Stavropol, 355017
А. L. Zaplatnikov
Russian Federation
Andrey L. Zaplatnikov - Dr. of Sci. (Med), professor, vice-rector for academic work, head of the department of neonatology.
bld. 1, 2/1, Barrikadnaya St., Moscow, 125993
N. E. Verisokina
Russian Federation
Natal’ya E. Verisokina - assistant professor of the department of pediatrics.
310, Mira St., Stavropol, 355017
A. A. Dyatlova
Russian Federation
Anna A. Dyatlova - student of the department of pediatrics.
310, Mira St., Stavropol, 355017
S. O. Kipkeyev
Russian Federation
Shamil’ O. Kipkeyev - pediatrician, applicant of the department of faculty pediatrics.
310, Mira St., Stavropol, 355017
A. K. Minasyan
Russian Federation
Artyom K. Minasyan - postgraduate student of the department of pediatrics.
310, Mira St., Stavropol, 355017
D. V. Bobryshev
Russian Federation
Dmitriy V. Bobryshev - Cand. of Sci. (Med), chief of the personalized medicine center.
310, Mira St., Stavropol, 355017G. A. Anisimov
Russian Federation
Georgiy S. Anisimov - Cand. of Sci. (Tech), assistant professor, Director of the Biotechnology Engineering Centre of the Institute of Living Systems.
1, Pushkin St., Stavropol, 355017
R. O. Budkevich
Russian Federation
Roman O. Budkevich - Cand. of Sci. (Bio), assistant professor, Head of the Research Laboratory “Nanobiotechnology and Biophysics' of the Institute of Living Systems.
1, Pushkin St., Stavropol, 355017
References
1. MaLtsev S.V., RyLova N.V. Vitamin D and immunity. Prakticheskaya meditsina = Practical medicine. 2015;(1):114-120. (In Russ.) AvaiLabLe at: https://cyberLeninka.ru/articLe/n/vitamin-d-i-immunitet/viewer.
2. Gromova O.A., Torshin I.YU. Vitamin D - smena paradigmy = Vitamin D - paradigm shift. Moscow; 2017. 576 p. Access mode: https://www.rosm-edLib.ru/book/ISBN9785970440582.htmL.
3. Gromova O.A., Torshin I.Y., Zakharova I.N., MaLyavskaya S.I. RoLe of vitamin D in reguLation of immunity, prevention and therapy of infectious pediatric diseases. Meditsinskiy sovet = Medical Council. 2017;(19):52-60. (In Russ.) doi: 10.21518/2079-701X-2017-19-52-60.
4. Zakharova I.N., KLimov L.Ya., Kasyanova A.N., Kuryaninova VA., DoLbnya S.V., GoreLov A.V. InterreLationships between the incidence of infectious diseases and vitamin D deficiency: The current state of the probLem. Infektsionnye Bolezni = Infectious diseases. 2018;16(3):69-78. (In Russ.) doi: 10.20953/1729-9225-2018-3-69-78.
5. Zakharova I.N., KLimov L.Ya., Kasyanova A.N., Kur'yaninova V.A., DoLbnya S.V., Ivanova A.V. Modern conception about vitamin D immuno-tropic effects. Voprosy prakticheskoy pediatrii = Clinical Practice in Pediatrics. 2019;14(1):7-17. (In Russ.) doi: 10.20953/1817-7646-2019-1-7-17.
6. Munns C.F., Shaw N., KieLy M., Specker B.L., Thacher T.D., Ozono K. et aL. GLobaL consensus recommendations on prevention and management of nutritionaL rickets. J Clin Endocrinol Metab. 2016;101(2):394-415. doi: 10.1210/jc.2015-2175.
7. KLimov L.Ia.. Kondrat'eva E.I.. IL'enkova N.A., DoLbnia S.V, DiatLova A.A., Enina E.A. et aL. Features of innate immunity against the background of chronic respiratory tract infection in chiLdren with cystic fibrosis. Pediatriya. Consilium Medicum = Pediatrics. Consilium Medicum. 2019;(1):59-66. doi: 10.26442/26586630.2019.1.190198.
8. Kodentsova V.M., MendeL O.I., Khotimchenko S.A., Baturin A.K., TuteLyan V.A. PhysioLogicaL needs and effective doses of Vitamin D for deficiency correction. Current state of the probLem. Voprosy pitaniya = Problems of Nutrition. 2017;(2):47-62. (In Russ.) AvaiLabLe at: https://eLibrary.ru/item.asp?id=28990189.
9. HoLick M.F. Vitamin D: extraskeLetaL heaLth. Rheum Dis Clin North Am. 2012;38(1):141-160. doi: 10.1016/j.ecL.2010.02.016.
10. WiLLiams C.J.B. On the use and administration of cod-Liver oiL in puLmonary consumption. London J Med. 1849;1:1-18.
11. Provvedini D.M., Tsoukas C.D., Deftos LJ., ManoLagas S.C. 1,25-dihydroxyvitamin D3 receptors in human Leukocytes. Science. 1983;221(4616):1181-1183. doi: 10.1126/science.6310748.
12. Lin R., White J.H. The pLeiotropic actions of vitamin D. Bioessays. 2004;26(1):21-28. doi: 10.1002/bies.10368.
13. Zakharova I.N., KLimov L.Y., Kasyanova A.N., Yagupova A.V., Kuryaninova V.A., DoLbnya S.V. The roLe of antimicrobiaL peptides and vitamin d anti-infection protection formation.
14. Pediatriya. Zhurnal im. G.N. Speranskogo = Pediatria. 2017;96(4):171-179. (In Russ.) AvaiLabLe at: https://pediatriajournaL.ru/archive?show=359§ion=4992.
15. D'yachenko A.G., D'yachenko P.A. CongenitaL immune system effector ceLLs and their roLe in aLLergic infLammation and asthma. Klinichna immunolohiia. Alerholohiia. Infektolohiia. = CLinicaL ImmunoLogy. ALLergoLogy. InfectoLogy. 2013;(3):21-24. (In Russ.) AvaiLabLe at: https://kiai.com.ua/ru-issue-articLe-917/Effektornye-kLetki-vrozhdennoy-immunnoy-sistemy-i-ih-roL-v-aLLergicheskom-vospaLenii-i-astme.
16. Peric M., KogLin S., Dombrowski Y., Grob K., Bradac E., Buchau A. et aL. Vitamin D anaLogs differentiaLLy controL antimicrobiaL peptide /“aLarmin” expression in psoriasis. PLoS One. 2009;4(7):e6340. doi: 10.1371/journaL.pone.0006340.
17. Amado CA., Garcia-Unzueta M.T., Farinas M.C., Santos F., Ortiz M., Munoz-Cacho P., Amado JA. Vitamin D nutritionaL status and vitamin D reguLated antimicrobiaL peptides in serum and pLeuraL fLuid of patients with infectious and noninfectious pLeuraL effusions. BMCPulm Med. 2016;16(1):99. doi: 10.1186/s12890-016-0259-4.
18. Abaturov A.Ye., Zavgorodnyaya N.Yu. Vitamin D Dependent Production of AntimicrobiaL Peptides. Zdorov’e rebenka = ChildS Health. 2012;(1):105-110. (In Russ.) AvaiLabLe at: http://www.mif-ua.com/archive/articLe/26038.
19. Abaturov A.E. Cationic antimicrobiaL peptides of the system of non-specific protection of respiratory tract: defensins and catheLicidins. Defensins - moLecuLes undergoing renaissance (part 1). Zdorov’e rebenka = Child's Health. 2011;(7):161-171. (In Russ.) AvaiLabLe at: http://www.mif-ua.com/archive/articLe/26053.
20. Zakharova I.N., Osmanov I.M., KLimov L.Y., Kasyanova A.N., Kuryaninova V.A., Lupan I.N. The roLe of antimicrobiaL peptides in defending the urinary tract against infections. Meditsinskiy Sovet = Medical Council. 2019;(2):143-150. (In Russ.) doi: 10.21518/2079-701X-2019-2-143-150.
21. BoLatchiev A.D., Baturin V.A. Defensins. The roLe in human pathoLogy and appLication prospects. Vestnik molodogo uchenogo = The Young Scientist’s Bulletin. 2016;15(4):17-22. (In Russ.) AvaiLabLe at: https://eLibrary.ru/item.asp?id=27672073.
22. Agier J., Brzezinska-BLaszczyk E. CatheLicidins and defensins reguLate mast ceLL antimicrobiaL activity. Postepy Hig Med Dosw. 2016;70:618-636. doi: 10.5604/17322693.1205357.
23. Abaturov A.E., Gerasimenko O.N., Vysochina I.L., Zavgorodnyaya N.YU. Defenziny i defenzin-zavi-simyye zabolevaniya = Defensins and defensin-dependent diseases. Odessa; 2011. 264 p. (In Russ.)
24. Park M.S., Kim J.I., Lee I., Park S., Bae J.Y., Park M.S. Towards the appLication of human defensins as antiviraLs. Biomolecules & Therapeutics. 2018;26(3):242-254. doi: 10.4062/biomoLther.2017.172.
25. Bahar A.A., Ren D. AntimicrobiaL peptides. Pharmaceuticals. 2013;6(12):1543-1575. doi: 10.3390/ph6121543.
26. Bensch K.W., Raida M., Magert HJ., Schulz-Knappe P., Forssmann W.G. hBD-1: a noveL beta-defensin from human pLasma. FEBS Lett. 1995;368(2):331-335. doi: 10.1016/0014-5793(95)00687-5.
27. Yamaguchi Y., Nagase T., Makita R., Fukuhara S., Tomita T., Tominaga T. et aL. Identification of muLtipLe noveL epididymis-specific beta-defensin isoforms in humans and mice. J Immunol. 2002;169(5):2516-2523. doi: 10.4049/jimmu-noL.169.5.2516.
28. Rashid R., VeLeba M., KLine K.A. FocaL targeting of the bacteriaL enveLope by antimicrobiaL peptides. Front. Cell Dev Biol. 2016;4:55. doi: 10.3389/fceLL.2016.00055.
29. Fusco A., Savio V., Cammarota M., ALfano A., SchiraLdi C., Donnarumma G. Beta-defensin-2 and beta-defensin-3 reduce intestinaL damage caused by SaLmoneLLa typhimurium moduLating the expression of cytokines and enhancing the probiotic activity of Enterococcus faecium. J Immunol Res. 2017;2017:6976935. doi: 10.1155/2017/6976935.
30. Patro S., Maiti S., Panda S.K., Dey N. UtiLization of pLant-derived recombinant human (3-defensins (hBD-1 and hBD-2) for averting saLmoneLLosis. Transgenic Res. 2015;24(2):353-364. doi: 10.1007/s11248-014-9847-3.
31. Mathew B., Nagaraj R. Variations in the interaction of human defensins with Escherichia coLi: PossibLe impLications in bacteriaL kiLLing. PLoS One. 2017;12(4):e0175858. doi: 10.1371/jour-naL.pone.0175858.
32. Maisetta G., Batoni G., Esin S., Raco G., Bottai D., FaviLLi F. et aL. SusceptibiLity of Streptococcus mutans and ActinobaciLLus actinomycetemcom-itans to bactericidaL activity of human beta-defensin 3 in bioLogicaL fLuids. Antimicrob Agents Chemother. 2005;49(3):1245-1248. doi: 10.1128/AAC.49.3.1245-1248.2005.
33. Woo J.I., KiL S.H., Brough D.E., Lee YJ., Lim DJ., Moon S.K. Therapeutic potentiaL of adenovirus-mediated deLivery of (3-defensin 2 for experimentaL otitis media. Innate Immun. 2015;21(2):215-224. doi: 10.1177/1753425914534002.
34. Lee H.Y., AndaLibi A., Webster P, Moon S.K., Teufert K., Kang S.H. et aL. AntimicrobiaL activity of innate immune moLecuLes against Streptococcus pneumoniae, MoraxeLLa catarrhaLis and nontypeabLe HaemophiLus infLuenzae. BMC Infect Dis. 2004;(4):12. doi: 10.1186/1471-2334-4-12.
35. Scharf S., ZahLten J., Szymanski K., HippenstieL S., Suttorp N., N’Guessan P.D. Streptococcus pneumoniae induces human p-defensin-2 and -3 in human Lung epitheLium. Exp Lung Res. 2012;38(2):100-110. doi: 10.3109/01902148.2011.652802.
36. Herrera R., Morris M., Rosbe K., Feng Z., Weinberg A., Tugizov S. Human beta-defensins 2 and -3 cointernaLize with human immunodeficiency virus via heparan suLfate proteogLycans and reduce infectivity of intraceLLuLar virions in tonsiL epitheLiaL ceLLs. Virology. 2016;487:172-187. doi: 10.1016/j.viroL.2015.09.025.
37. Ouinones-Mateu M.E., Lederman M.M., Feng Z., Chakraborty B., Weber J., RangeL H.R. et aL. Human epitheLiaL beta-defensins 2 and 3 inhibit HIV-1 repLication. AIDS. 2003;17(1):39-48. doi: 10.1097/00002030-200311070-00001.
38. Kota S., Sabbah A., Chang T.H., Harnack R., Xiang Y., Meng X., Bose S. RoLe of human beta-defensin-2 during tumor necrosis factor-aLpha/ NF-kappaB-mediated innate antiviraL response against human respiratory syncytiaL virus. J Biol Chem. 2008;283(33):22417-22429. doi: 10.1074/jbc.M710415200.
39. Crack L.R., Jones L., MaLavige G.N., PateL V., Ogg G.S. Human antimicrobiaL peptides LL-37 and human (3-defensin-2reduce viral replication in keratinocytes infected with varicella zoster virus. Clin Exp Dermatol. 2012;37(5):534-543. doi: 10.1111/j.1365-2230.2012.04305.x.
40. Tomalka J., Azodi E., Narra H.P., Patel K., O’Neill S., Cardwell C., et al. p-Defensin 1 plays a role in acute mucosal defense against Candida albicans. J Immunol. 2015;194(4):1788-1795. doi: 10.4049/jimmunol.1203239.
41. Swidergall M., Ernst J.F. Interplay between Candida albicans and the antimicrobial peptide armory. Eukaryot Cell. 2014;13(8):950-957. doi: 10.1128/EC.00093-14.
42. Dilek F., Emin О., Gultepe B., Yazici M., Qakir E., Gedik A.H. Evaluation of nasal fluid (3-defensin 2 levels in children with allergic rhinitis. Turk Pediatri Ars. 2017;52(2):79-84. doi: 10.5152/TurkPediatriArs.2017.4497.
43. Makarova S.G., Namazova-Baranova L.S. Sufficiency of micronutrients and allergy prevention - is there a “period of preventive vitaminization“? (part 1). Pediatriya. Zhurnal im. G.N. Speranskogo = Pediatria. 2016;(6):157-165. (In Russ.) Available at: http://pediatriajournal.ru/archive?show=355§ion=4786.
44. Niyonsaba F., Kiatsurayanon C., Ogawa H. The role of human (3-defensins in allergic diseases. Clin Exp Allergy. 2016;46(12):1522-1530. doi: 10.1111/cea.12843.
45. Chieosilapatham P., Ogawa H., Niyonsaba F. Current insights into the role of human (3-defensins in atopic dermatitis. Clin Exp Immunol. 2017;190(2):155-166. doi: 10.1111/cei.13013.
46. Marcinkiewicz M., Majewski S. The role of antimicrobial peptides in chronic inflammatory skin diseases. Advanxed Dermatol Allergol. 2016;33(1):6-12. doi: 10.5114/pdia.2015.48066.
47. Clausen M.L., Jungersted J.M., Andersen PS., Slotved H.C., Krogfelt K.A., Agner T Human p-defensin-2 as a marker for disease severity and skin barrier properties in atopic dermatitis. Br J Dermatol. 2013;169(3):587-593. doi: 10.1111/bjd.12419.
48. Baines KJ., Wright T.K., Simpson J.L., McDonald V.M., Wood L.G., Parsons K.S. et al. Airway p-defensin-1 protein is elevated in COPD and severe asthma. Mediators Inflamm. 2015;2015:407271. doi: 10.1155/2015/407271.
49. Thijs W., Janssen K., van Schadewijk A.M., Papapoulos S.E., le Cessie S., Middeldorp S. et al. Nasal levels of antimicrobial peptides in allergic asthma patients and healthy controls: differences and effect of a short 1,25(OH)2 vitamin D3 treatment. PLoS One. 2015;10(11):e0140986. doi: 10.1371/journal.pone.0140986.
50. Witkowska D., Bartys A., Gamian A. Defensins and cathelicidins as natural peptide antibiotics. Postepy Hig Med Dosw. 2008;62:694-707. Available at: https://www.ncbi.nlm.nih.gov/pub-med/19188885.
51. McGlasson S.L., Semple F., MacPherson H., Gray M., Davidson DJ., Dorin J.R. Human p-defensin 3 increases the TLR9-dependent response to bacterial DNA. Eur J Immunol. 2017;47(4):658-664. doi: 10.1002/eji.201646799.
52. Biragyn A., Ruffini P.A., Leifer C.A., Klyushnen-kova E., Shakhov A., Chertov O. et al. Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin-2. Science. 2002;298(5595):1025-1029. doi: 10.1126/sci-ence.1075565.
53. Kroner Jde C., Sommer A., Fabri M. Vitamin D every day to keep the infection away? Nutrients. 2015;7(6):4170-4188. doi: 10.3390/nu7064170.
54. Zakharova I.N., Borovik T.E., Vakhlova I.V., Gorelov A.V., Gumenyuk O.I., Gusev E.I. et al. National program “Vitamin D deficiency in children and adolescents of the Russian Federation: modern approaches to correction“ Moscow: Pediatr’’; 2018. 96 p. (In Russ.) Available at: https://elibrary.ru/item.asp?id=34881251.
55. Zakharova I.N., Machneva E.B., Oblogina I.S. Breast milk is a living tissue! How to preserve breastfeeding? Meditsinskiy Sovet = Medical Council. 2017;(19):24-29. (In Russ.) https://doi.org/10.21518/2079-701X-2017-19-24-29.
56. Cacho N.T., Lawrence R.M. Innate immunity and breast milk. Front Immunol. 2017;8:584. doi: 10.3389/fimmu.2017.00584.
Review
For citations:
Zakharova IN, Tsutsayeva AN, Klimov LY, Kur'yaninova VA, Dolbnya SV, Zaplatnikov АL, Verisokina NE, Dyatlova AA, Kipkeyev SO, Minasyan AK, Bobryshev DV, Anisimov GA, Budkevich RO. Vitamin D and defensins production in infants. Meditsinskiy sovet = Medical Council. 2020;(1):158-169. (In Russ.) https://doi.org/10.21518/2079-701X-2020-1-158-169