Possibilities of using continuous glycemic monitoring to assess the effectiveness of therapy in patients with MODY-diabetes
https://doi.org/10.21518/2079-701X-2020-7-26-31
Abstract
Verification of the type of diabetes mellitus in young people is of high clinical significance in the clinical practice since the purpose of treatment depends on this: from the correction of carbohydrate metabolism by a rational diet to the administration of oral hypoglycemic drugs and insulin therapy. The chosen therapy has a significant impact on the quality of life of the patient. With the most common types of diabetes in young people the appointment of therapy is not in doubt, since with type 1 diabetes mellitus there is an absolute need for the maintenance of exogenous insulin, and with type 2 the administration of metformin is pathogenetically substantiated. In more rare forms of diabetes which MODY belongs to sulfonylurea preparations are recommended in most cases and there are few conflicting data on the effects of newer classes (DPP4, SGLT2 inhibitors, GLP1 agonists) with monogenic forms. Using the method of continuous monitoring of glucose (CGMS) and glycemic variability indicators it is possible to determine the effectiveness of various classes of sugar-lowering drugs for rare types of diabetes mellitus which will help practitioners in choosing therapy. In the literature single studies using CGMS have been described in this group of patients. In Turkey CGMS was performed for 8 patients with GCK-MODY; it was shown that in 50% of patients the glucose values during the day exceeded the normal ranges. Italian scientists conducted a study in which they diagnosed glycemic variability, in particular episodes of hypoglycemia, in patients with HNF4AMODY diabetes (MODY1) using CGMS. The clinical consequence of episodes of asymptomatic hypoglycemia in the MODY cohort remains unknown. Diagnosing the predominance of fasting or postprandial hyperglycemia, the determination of hypoglycemia can help in the appointment of pathogenetic therapy and improve the quality of life of people diagnosed with MODY-diabetes.
About the Authors
A. K. OvsyannikovaRussian Federation
Alla K. Ovsyannikova, Cand. of Sci. (Med.), Senior Researcher at the Laboratory of Clinical Population and Prophylactic Research of Therapeutic and Endocrine Diseases
175/1, Boris Bogatkov St., Novosibirsk, 630089, Russia
M. V. Ryabets
Russian Federation
Marina V. Ryabets, Resident
52, Krasnyy prospect, Novosibirsk, 630091, Russia
O. D. Rymar
Russian Federation
Oksana D. Rymar, Dr. of Sci. (Med.), Head of the Laboratory of Clinical Population and Prophylactic Research of Therapeutic and Endocrine Diseases
175/1, Boris Bogatkov St., Novosibirsk, 630089, Russia
References
1. Dedov I.I., Shestakova M.V., Mayorov A.Y. (eds.) Standards of specialized diabetes care. 8th ed. Sakharni Diabet = Diabetes Mellitus. 2017;20(1S). (In Russ.) doi: 10.14341/DM20171S8.
2. Ovsyannikova A.K., Rymar O.D., Ivanoshchuk D.E., Mikhailova S.V., Shakhtshneider E.V., Orlov P.S. et al. A case of maturity onset diabetes of the young (MODY3) in a family with a novel HNF1A gene mutation in five generations. Diabetes therapy. 2018;9(1):413–420. doi: 10.1007/s13300-017-0350-8.
3. Kleinberger J.W., Pollin T.I. Undiagnosed MODY: Time for action. Curr Diab Rep. 2015;15(12):110. doi: 10.1007/s11892-015-0681-7.
4. Shields B.M., Hicks S., Shepherd M.H., Colclough K., Hattersley A.T., Ellard S. Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia. 2010;53(12):2504–2508. doi: 10.1007/s00125-010-1799-4.
5. Ovsyannikova A.K. The genetic characteristics of MODY 2 diabetes in Siberia. Byulleten’ Sibirskogo otdeleniya Rossiyskoy akademii meditsinskikh nauk = Bulletin of Siberian Branch of Russian Academy of Medical Sciences. 2013;33(5):74–77. (In Russ.) Available at: http://sibmed.net/article.php?lang=eng&id_article=240.
6. Rubio-Cabezas O., Hattersley A.T., Njølstad P.R., Mlynarski W., Ellard S., White N. et al. ISPAD Clinical Practice Consensus Guidelines 2014. The diagnosis and management of monogenic diabetes in children and adolescents. Pediatric Diabetes. 2014;15(20):47–64. doi: 10.1111/pedi.12192.
7. Nyunt O., Wu J.Y., McGown I.N., Harris M., Huynh T., Leong G.M. et al. Investigating Maturity Onset Diabetes of the Young. Clin Biochem Rev. 2009;30(2):67–74. Available at: https://pubmed.ncbi.nlm.nih.gov/19565026-investigating-maturity-onset-diabetes-of-the-young/
8. Zubkova N.A., Gioeva O.A., Tikhonovich Y.V., Petrov V.M., Vasil’ev E.V., Tyul’pakov A.N., Dedov I.I. Genotype-based personalized correction of glycemic control in patients with MODY due to mutations in GCK, HNF1A and HNF4A genes. World Journal of Personalized Medicine = World Journal of Personalized Medicine. 2017;1(1):40–48. (In Russ.) doi: 10.14341/WJPM9298.
9. Kuraeva T.L., Sechko E.A., Zilberman L.I., Ivanova O.N., Mayorov A.Yu., Koksharova E.O., Peterkova V.A., Dedov I.I. Molecular genetic and clinical variants MODY2 and MODY3 in children in Russia. Problemy endokrinologii = Problems of Endocrinology. 2015;61(5):14–25. (In Russ.) doi: 10.14341/probl201561514-25.
10. Covanțev S., Chiriac A., Perciuleac L., Zozina V. Maturity onset diabetes of the young: Diagnosis and treatment options. Russian Open Medical Journal. 2016;5(4):e0402. doi: 10.15275/rusomj.2016.0402.
11. Heuvel-Borsboom H., Valk H.W., Losekoot M., Westerink J. Maturity onset diabetes of the young: Seek and you will find. The Netherlands Journal of Medicine. 2016;74(5):193–200. Available at: http://www.njmonline.nl/getpdf.php?id=1716.
12. Voevoda M.I., Shakhtshneyder E.V., Rymar O.D., Ovsyannikova A.K., Voropaeva O.D., Ivanoshchuk D.E. et al. Molecular genetics and clinical findings of MODY diabetes. Novosibirsk: Publishing House SB RAS; 2017. 164 p. (In Russ.) Available at: https://www.sibran.ru/catalog/BIO/169543/
13. Peterkova V.A., Kuraeva T.L., Prokof’ev S.A., Emelyanov A.O., Zakharova E.Yu., Tsygankova P.G., Grishina D.P. Molecular genetics and clinical aspects of monogenic Diabetes Mellitus. Vestnik Rossiyskoy akademii meditsinskikh nauk = Annals of the Russian academy of medical sciences. 2012;67(1):81–86. (In Russ.) doi: 10.15690/vramn.v67i1.115.
14. Brunerova L., Rahelić D., Ceriello A., Broz J. Use of oral antidiabetic drugs in the treatment of maturity‐onset diabetes of the young: A mini review. Diabetes Metab Res Rev. 2018;34(1):e2940. doi: 10.1002/dmrr.2940.
15. Raile K., Schober E., Konrad K., Thon A., Grulich-Henn J.,Meissner T. et al. Treatment of young patients with HNF1A mutations (HNF1A‐MODY). Diabet Med. 2015;32(4):526–530. doi: 10.1111/dme.12662.
16. Laver T.W., Colclough K., Shepherd M., Patel K., Houghton J.A.L., Dusatkova P. et al. The common p.R114W HNF4A mutation causes a distinct clinical subtype of monogenic diabetes. Diabetes. 2016;65(10):3212–3217. doi: 10.2337/db16-0628.
17. Kusunoki E., Hidenori K., Kusano M., Teranishi R., Shibuya H., Okada T. Continuous Interstitial Subcutaneous Fluid Glucose (ISFG) Measurement during Pre- and Intraoperative Periods for Highly Invasive Surgery. Masui. 2016;65(3):281–287. (In Japanese) Available at: https://www.ncbi.nlm.nih.gov/pubmed/27097509.
18. Kusunoki E., Hidenori K., Kusano M., Teranishi R., Shibuya H., Okada T. Continuous Interstitial Subcutaneous Fluid Glucose (ISFG) Measurement during Pre- and Intraoperative Periods for Highly Invasive Surgery. Masui. 2016;65(3):281–287. (In Japanese) Available at: https://www.ncbi.nlm.nih.gov/pubmed/27097509.
19. Krivko A.A., Melnichenko G.A., Kuznetsov N.S., Troshina E.A., Dedov I.I. Modern technologies for diagnostics and treatment of insulinoma. Problemy endokrinologii = Problems of Endocrinology. 2013;59(5):36–41. (In Russ.) doi: 10.14341/probl201359536-41.
20. Gu W., Liu Y., Liu H., Yang G., Guo Q., Du J. et. al. Characteristics of Glucose Metabolism Indexes and Continuous Glucose Monitoring System (CGMS) in Patients with Insulinoma. Diabetol Metab Syndr. 2017;9:17. doi: 10.1186/s13098-017-0215-3.
21. Klimontov V.V., Myakina N.E. Glycemia variability in diabetes mellitus. Novosibirsk: PPC NSU; 2016. 251 p. (In Russ.)
22. Klimontov V.V., Myakina N.E. Glycaemic variability in diabetes: a tool for assessing the quality of glycaemic control and the risk of complications. Sakharnyy diabet = Diabetes mellitus. 2014;17(2):76–82. (In Russ.) doi: 10.14341/DM2014276-82.
23. Klimontov V.V., Myakina N.E. Glucose variability indices predict the episodes of nocturnal hypoglycemia in elderly type 2 diabetic patients treated with insulin. Diabetes Metab Syndr. 2017;11(2):119–124. doi: 10.1016/j.dsx.2016.08.023.
24. Tang L., Ye H., Hong Q., Wang L., Wang Q., Wang H. et al. Elevated CpG island methylation of GCK gene predicts the risk of type 2 diabetes in Chinese males. Gene. 2014;547(2):329–333. doi: 10.1016/j.gene.2014.06.062.
25. Negahdar M., Aukrust I., Molnes J., Solheim M.H., Johansson B.B., Sagen J.V. et al. GCK-MODY diabetes as a protein misfolding disease: the mutation R275C promotes protein misfolding, self-association and cellular degradation. Mol Cell Endocrinol. 2014;382(1):55–65. doi: 10.1016/j.mce.2013.08.020.
26. Thanabalasingham G., Kaur K., Talbot F., Colclough K., Mathews A., Taylor J. et al. Atypical phenotype associated with reported GCK exon 10 deletions: clinical judgement is needed alongside appropriate genetic investigations. Diabet Med. 2013;30(8):e233–e238. doi: 10.1111/dme.12210.
27. Steele A.М., Wensley K.J., Ellard S., Murphy R., Shepherd M., Colclough K. Use of HbA1c in the identification of patients with hyperglycaemia caused by a glucokinase mutation: Observational case control studies. Plos One. 2013;8(6):e65326. doi: 10.1371/journal.pone.0065326.
28. Lachance C.-H. Practical Aspects of Monogenic Diabetes: A Clinical Point of View. Can J Diabetes. 2016;40(5):368–375. doi: 10.1016/j.jcjd.2015.11.004.
29. Timsit J., Saint-Martin C., Dubois-Laforgue D., Bellanné-Chantelot C. Searching for Maturity-Onset Diabetes of the Young (MODY): When and What for? Can J Diabetes. 2016;40(5):455–461. doi: 10.1016/j.jcjd.2015.12.005.
30. Pihoker C., Gilliam L., Ellard S., Dabelea D., Davis C., Dolan L.M. et al. Prevalence, characteristics and clinical diagnosis of maturity onset diabetes of the young due to mutations in HNF1A, HNF4A, and glucokinase: results from the search for diabetes in youth. JCEM. 2013;98(10):4055–
31. doi: 10.1210/jc.2013-1279.
32. Pearson E.R., Starkey B.J., Powell R.J., Gribble F., Clark P.M., Hattersley A.T. Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet. 2003;362(9392):1275–1281. doi: 10.1016/S0140-6736(03)14571-0.
33. Østoft S.H., Bagger J.I., Hansen T., Pedersen O., Faber J., Holst J.J. et al. Glucose-lowering effects and low risk of hypoglycemia in patients with maturity-onset diabetes of the young when treated with a GLP-1 receptor agonist: A double-blind, randomized, crossover trial. Diabetes Care. 2014;37(7):1797–1805. doi: 10.2337/dc13-3007.
34. Lumb A.N., Gallen I.W. Treatment of HNF1-alpha MODY with the DPP-4 inhibitor sitagliptin(1). Diabet Med. 2009;26(2):189–190. doi: 10.1111/j.1464-5491.2008.02645.x.
35. Katra B., Klupa T., Skupien J., Szopa M., Nowak N., Borowiec M. et al. Dipeptidyl peptidase‐IV inhibitors are efficient adjunct therapy in HNF1A maturity‐onset diabetes of the young patients – report of two cases. Diabetes Technol Ther. 2010;12(4):313–316. doi: 10.1089/dia.2009.0159.
36. Østoft S.H. Incretin hormones and maturity onset diabetes of the young – pathophysiological implications and anti‐diabetic treatment potential. Dan Med J. 2015;62(9):B4860. Available at: https://www.ncbi.nlm.nih.gov/pubmed/26324089.
37. Østoft S.H., Bagger J.I., Hansen T., Hartmann B., Pedersen O., Holst J.J. et al. Postprandial incretin and islet hormone responses and dipeptidyl‐peptidase 4 enzymatic activity in patients with maturity onset diabetes of the young. European Journal of Endocrinology. 2015;173(2):205–215. doi: 10.1530/EJE-15-0070.
38. Stride A., Ellard S., Clark P., Shakespeare L., Slzmann M., Shepherd M. et al. Beta-cell dysfunction, insulin sensitivity, and glycosuria precede diabetes in hepatocyte nuclear factor-1alpha mutation carriers. Diabetes Care. 2005;28(7):1751–1756. doi: 10.2337/diacare.28.7.1751.
39. Hohendorff J., Szopa M., Skupien J. A single dose of dapagliflozin, an SGLT- 2 inhibitor, induces higher glycosuria in GCK- and HNF1A-MODY than in type 2 diabetes mellitus. Endocrine. 2017;57(2):272–279. doi: 10.1007/s12020-017-1341-2.
40. Tatli Z.U., Direk G., Hepokur M., Hatipoğlu N., Akin L., Kendirci M., Kurtoglu S. Continuous Glucose Monitoring Results of Our Cases with MODY Type 2 Diabetes. ESPE Abstracts. 2018;89:P3-P124. Avalable at: http://abstracts.eurospe.org/hrp/0089/hrp0089p3-p124.
41. Bacon S., Kyithar M.P., Condron E.M., Vizzard N., Burke M., Byrne M.M. Prolonged Episodes of Hypoglycaemia in HNF4A-MODY Mutation Carriers with IGT. Evidence of Persistent Hyperinsulinism into Early Adulthood. Acta Diabetologica. 2016;53:965–972. doi: 10.1007/s00592-016-0890-9.
Review
For citations:
Ovsyannikova AK, Ryabets MV, Rymar OD. Possibilities of using continuous glycemic monitoring to assess the effectiveness of therapy in patients with MODY-diabetes. Meditsinskiy sovet = Medical Council. 2020;(7):26-31. (In Russ.) https://doi.org/10.21518/2079-701X-2020-7-26-31