Preview

Meditsinskiy sovet = Medical Council

Advanced search

Obesity: The Crossroads of Opinion, Knowledge, and Opportunity

https://doi.org/10.21518/2079-701X-2020-7-108-120

Abstract

The continuing growth in the prevalence of obesity in close connection with the tandem of a number of chronic diseases, each of which is in the nature of a non-infectious epidemic, indicates an obesity syndrome. This is one of the most complex and expensive diseases, taking into account its cardio-metabolic and oncological risk, chronic progressive course and recurrent nature. Such a situation dictates the necessity to clarify the pathogenetic approaches to the problem, based on the principles of early treatment, before the debut of comorbid nosology’s. With the multifactorial nature of obesity, it is difficult to single out the principal directions of intervention with the goal of not only reducing body weight, but especially its stabilization. The accumulated data on new pathogenesis links are analyzed: dysfunctions of the microbiota and entero-endocrine system of the gastrointestinal tract with impaired incretin synthesis, metainflammation, peripheral and central insulin resistance, which integrally changes intracellular energy metabolism through a change in the activity of the AMP-activated protein kinase and is associated with systemic inflammatory response. These links are interconnected by the axis: “intestine – brain – liver”, which explains the relationship of obesity with multiple multidisciplinary pathology and reflects the necessity for multidirectional effects. From the point of view of the definition of obesity as a brain disease, with an emphasis on the hypothalamus, the feasibility of an approach to weight loss only through lifestyle changes and the problem of the slipping effect is discussed. The necessity for weight loss is discussed along with the regulation of metabolic imbalance. The feasibility of combined pharmacological intervention is substantiated. ReduxinForte is considered as the drug of choice with a detailed analysis of its components, metformin and sibutramine, their ability to correct various parts of the pathogenesis of obesity and pleiotropic effects to achieve stable metabolic control and reduce the risks of complications.

About the Authors

L. A. Ruyatkina
Novosibirsk State Medical University
Russian Federation

Lyudmila A. Ruyatkina, Dr. of Sci. (Med), Professor, professor of the Chair of Emergency Therapy with Endocrinology and Occupational Pathology of the Faculty of Advanced Training and Retraining of Physicians

52, Krasny Prospect, Novosibirsk, 630091, Russia



D. S. Ruyatkin
Novosibirsk State Medical University
Russian Federation

Dmitriy S. Ruyatkin, Cand. of Sci. (Med.), Associate Professor, Associate Professor of the Chair of Emergency Therapy with Endocrinology and Occupational Pathology of the Faculty of Advanced Training and Professional Retraining of Physicians

52, Krasny Prospect, Novosibirsk, 630091, Russia



References

1. Frellick M. AMA declares obesity a disease. Medscape Medical News. 2013. Available at: https://www.medscape.com/viewarticle/806566.

2. Aguilera C., Labbé T., Busquets J., Venegas P., Neira C., Valenzuela A. Obesity: risk factor or primary disease? Rev Med Chil. 2019;147(4):470–474. doi: 10.4067/S0034-98872019000400470.

3. Ng M., Fleming T., Robinson M., Thomson B., Graetz N., Margono C. et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet. 2014;384(9945):766–781. doi: 10.1016/S0140-6736(14)60460-8.

4. Spoer B., Fullilove R. Obesity: a syndemics perspective. Clin Obes. 2016;6(3):171–174. doi: 10.1111/cob.12141.

5. Yeh T.L., Chen H.H., Chiu H.H., Chiu Y.H., Hwang L.C., Wu S.L. Morbidity associated with overweight and obesity in health personnel: a 10-year retrospective of hospital-based cohort study in Taiwan. Diabetes Metab Syndr Obes. 2019;12:267–274. doi: 10.2147/DMSO.S193434.

6. Schwartz M.W., Seeley R.J., Zeltser L.M., Drewnowski A., Ravussin E., Redman L.M. et al. Obesity Pathogenesis: An Endocrine Society Scientific Statement. Endocr Rev. 2017;38(4):267–296. doi: 10.1210/er.2017-00111.

7. Misra A., Jayawardena R., Anoop S. Obesity in South Asia: Phenotype, Morbidities, and Mitigation. Curr Obes Rep. 2019;8(1):43–52. doi: 10.1007/s13679-019-0328-0.

8. McIntyre A. Burden of illness review of obesity: are the true costs realised? RSPH. 1998;118(2):76–84. doi: 10.1177/146642409811800207.

9. Bray G., Kim K.K., Wilding J.P.H. Obesity: a chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes Rev. 2017;18(7):715–723. doi: 10.1111/obr.12551.

10. Diabetes Prevention Program Research Group; Knowler W.C., Barrett-Connor E., Fowler S.E., Hamman R.F., Lachin J.M., Walker E.A. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403. doi: 10.1056/NEJMoa012512.

11. Diabetes Prevention Program Research Group; Nathan D.M., Barrett-Connor E., Crandall J.P., Edelstein S. L., Goldberg R.B., Horton E.S. Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet. Diabetes Endocrinol. 2015;3(11):866–875. doi: 10.1016/S2213-8587(15)00291-0.

12. Yazıcı D., Sezer H. Insulin Resistance, Obesity and Lipotoxicity. In: Engin A., Engin A. (eds.) Obesity and Lipotoxicity. Advanced Experimental Medicine and Biology; 2017. doi: 10.1007/978-3-319-48382-5_12.

13. Bodhini D., Mohan V. Mediators of insulin resistance & cardiometabolic risk: Newer insights. Indian J Med Res. 2018;148(2):127–129. doi: 10.4103/ijmr.IJMR_969_18.

14. Ruyatkina L.A., Ruyatkin D.S., Iskhakova I.S. Opportunities and options for surrogate assessment of insulin resistance. Ozhireniye i metabolizm = Obesity and Metabolism. 2019;16(1):27–33. doi: 10.14341/omet10082.

15. Balanova Y.A., Shalnova S.A., Deev A.D., Imaeva A.E., Kontsevaya A.V., Muromtseva G.A. et al. Оbesity in Russian population – prevalence and association with the non-communicable diseases risk factors Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2018;(6):123–130. doi: 10.15829/1560-4071-2018-6-123-130.

16. Romantsova T.R., Sych Y.P. Immunometabolism and metainflammation in obesity. Ozhireniye i metabolizm = Obesity and Metabolism. 2019;16(4):3–17. doi: 10.14341/omet12218.

17. Garvey W.T., Garber A.J., Mechanick J.I., Einhorn D., Dagogo-Jack S., Einhorn D. et al.; AACE Obesity Scientific Committee. American association of clinical endocrinologists and american college of endocrinology position statement on the 2014 advanced framework for a new diagnosis of obesity as a chronic disease. Endocr Pract. 2014;20(9):977–989. doi: 10.4158/EP14280.PS.

18. Ochner C.N., Tsai A.G., Kushner R.F., Wadden T.A. Treating obesity seriously: when recommendations for lifestyle change confront biological adaptations. Lancet. Diabetes Endocrinol. 2015;3(4):232–234. doi: 10.1016/S2213-8587(15)00009-1.

19. Sinclair P., Docherty N., le Roux C.W. Metabolic Effects of Bariatric Surgery. Clin Chem. 2018;64(1):72–81. doi: 10.1373/clinchem.2017.272336.

20. Nainggolan L. Obesity as a “Brain Disease„; a Driver for New Therapies. 22nd European Congress on Obesity. 2015. Available at: https://www.medscape.com/viewarticle/844410.

21. Foretz M., Viollet B. Therapy: Metformin takes a new route to clinical efficacy. Nat Rev Endocrinol. 2015;11(7):390–392. doi: 10.1038/nrendo.2015.85.

22. Luo C., Wang X., Huang H., Mao X., Zhou H., Liu Z. Effect of Metformin on Antipsychotic-Induced Metabolic Dysfunction: The Potential Role of Gut- Brain Axis. Front Pharmacol. 2019;10:371. doi: 10.3389/fphar.2019.00371.

23. Bauer P.V., Hamr S.C., Duca F.A. Regulation of energy balance by a gutbrain axis and involvement of the gut microbiota. Cell Mol Life Sci. 2016;73(4):737–755. doi: 10.1007/s00018-015-2083-z.

24. Petra A.I., Panagiotidou S., Hatziagelaki E., Stewart J. M., Conti P., Theoharides T.C. Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther. 2015;37(5):984–995. doi: 10.1016/j.clinthera.2015.04.002.

25. Volkova N.I., Ganenko L.A., Golovin S.N. The role of gut microbiota in the development of obesity and its metabolic profile (Part II). Meditsinskiy vestnik Severnogo Kavkaza = Medical news of the North Caucasus. 2019;14(2):391–396. (In Russ.) doi: 10.14300/mnnc.2019.14098.

26. Hills R.D. Jr., Pontefract B.A., Mishcon H.R., Black C.A., Sutton S.C., Theberge C.R. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients. 2019;11(7):1613. doi: 10.3390/nu11071613.

27. Allin K.H., Tremaroli V., Caesar R., Jensen B.A.H., Damgaard M.T.F., Bahl M.I. et al. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia. 2018;61(4):810–820. doi: 10.1007/s00125-018-4550-1.

28. Paternoster S., Falasca M. Dissecting the Physiology and Pathophysiology of Glucagon-Like Peptide-1. Front Endocrinol. 2018;9:584. doi: 10.3389/fendo.2018.00584.

29. Fava G.E., Dong E.W., Wu H. Intra-islet glucagon-like peptide 1. J Diabetes Complications. 2016;30(8):1651–1658. doi: 10.1016/j.jdiacomp.2016.05.016.

30. Liu C., Wang C., Guan S., Liu H., Wu X., Zhang Z. et al. The Prevalence of Metabolically Healthy and Unhealthy Obesity according to Different Criteria. Obes Facts. 2019;12(1):78–90. doi: 10.1159/000495852.

31. Smith G.I., Mittendorfer B., Klein S. Metabolically healthy obesity: facts and fantasies. J Clin Invest. 2019;129(10):3978–3989. doi: 10.1172/JCI129186.

32. Longo M., Zatterale F., Naderi J., Parrillo L., Formisano P., Raciti G.A. et al. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int J Mol Sci. 2019;20(9):2358. doi: 10.3390/ijms20092358.

33. Brøns C., Grunnet L.G. Mechanisms in endocrinology: Skeletal muscle lipotoxicity in insulin resistance and type 2 diabetes: a causal mechanism or an innocent bystander? Eur J Endocrinol. 2017;176(2):R67–R78. doi: 10.1530/EJE-16-0488.

34. Hwang I., Kim J.B. Two Faces of White Adipose Tissue with Heterogeneous Adipogenic Progenitors. Diabetes Metab J. 2019;43(6):752–762. doi: 10.4093/dmj.2019.0174.

35. Cetinkalp S., Simsir I.Y., Ertek S. Insulin resistance in brain and possible therapeutic approaches. Curr Vasc Pharmacol. 2014;12(4):553–564. doi: 10.2174/1570161112999140206130426.

36. Wang B., Cheng K.K. Hypothalamic AMPK as a Mediator of Hormonal Regulation of Energy Balance. Int J Mol Sci. 2018;19(11):3552. doi: 10.3390/ijms19113552.

37. Zhou Z., Tang Y., Jin X., Chen C., Lu Y., Liu L., Shen C. Metformin Inhibits Advanced Glycation End Products-Induced Inflammatory Response in Murine Macrophages Partly through AMPK Activation and RAGE/NFkappaB Pathway Suppression. J Diabetes Res. 2016;2016:4847812. doi: 10.1155/2016/4847812.

38. Youn J.Y., Siu K.L., Lob H.E., Itani H., Harrison D.G., Cai H. Role of vascular oxidative stress in obesity and metabolic syndrome. Diabetes. 2014;63(7):2344–2355. doi: 10.2337/db13-0719.

39. Filatova G.A., Depuyi T.I., Yevdokimov A.I. Obesity: controversial issues that define metabolic health. Endokrinologiya: Novosti. Mneniya. Obucheniye = Endocrinology: News, Opinions, Training. 2018;7(1):58–67. (In Russ.) Available at: https://cyberleninka.ru/article/n/ozhirenie-spornye-voprosy-opredelyayuschie-metabolicheskoe-zdorovie.

40. Ye J., Kraegen T. Insulin resistance: central and peripheral mechanisms. The 2007 Stock Conference Report. Obes Rev. 2008;9(1):30–34. doi: 10.1111/j.1467-789X.2007.00402.x.

41. Gummesson A., Nyman E., Knutsson M., Karpefors M. Effect of weight reduction on glycated haemoglobin in weight loss trials in patients with type 2 diabetes. Diabetes Obes Metab. 2017;19(9):1295–1305. doi: 10.1111/dom.12971.

42. Grams J., Garvey W.T. Weight Loss and the Prevention and Treatment of Type 2 Diabetes Using Lifestyle Therapy, Pharmacotherapy, and Bariatric Surgery: Mechanisms of Action. Curr Obes Rep. 2015;4(2):287–302. doi: 10.1007/s13679-015-0155-x.

43. American Diabetes Association. Prevention or Delay of Type 2 Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care. 2018;41(Suppl 1):S51–S54. doi: 10.2337/dc18-S005.

44. Cook R.N., Appel L.J., Whelton P.K. Weight change and mortality: Long-term results from the trials of hypertension prevention. J Clin Hypertens. 2018;20(12):1666–1673. doi: 10.1111/jch.13418.

45. Thomas D.M., Ivanescu A.E., Martin C.K., Heymsfield S.B., Marshall K., Bodrato V.E. et al. Predicting successful long-term weight loss from short-term weight-loss outcomes: new insights from a dynamic energy balance model (the POUNDS Lost study). Am J Clin Nutr. 2015;101(3):449–454. doi: 10.3945/ajcn.114.091520.

46. Finer N. Predicting therapeutic weight loss. Am J Clin Nutr. 2015;101(3):419–420. doi: 10.3945/ajcn.114.106195.

47. Bailey C.J. Metformin: historical overview. Diabetologia. 2017;60(9):1566–1576. doi: 10.1007/s00125-017-4318-z.

48. Kastuyama H., Yanai H. Does Metformin Assist New Anti-Diabetic Drugs to Succeed? J Clin Med Res. 2019;11(2):151–155. doi: 10.14740/jocmr3706.

49. Yerevanian A., Soukas A.A. Metformin: Mechanisms in Human Obesity and Weight Loss. Curr Obes Rep. 2019;8(2):156–164. doi: 10.1007/s13679-019-00335-3.

50. Ma W., Chen J., Meng Y., Yang J., Cui Q., Zhou Y. Metformin Alters Gut Microbiota of Healthy Mice: Implication for Its Potential Role in Gut Microbiota Homeostasis. Front Microbiol. 2018;9:1336. doi: 10.3389/fmicb.2018.01336.

51. Bahne E., Hansen M., Brønden A., Sonne D.P., Vilsbøll T., Knop F.K. Involvement of Glucagon-like Peptide-1 in the Glucose-lowering effect of Metformin. Diabetes Obes Metab. 2016;18(10):955–961. doi: 10.1111/dom.12697.

52. Ruyatkina L.A., Ruyatkin D.S. Multidimensional effects of metformin in patients with type 2 diabetes. Sakharnyy diabet = Diabetes mellitus. 2017;20(3):210–219. (In Russ.) doi: 10.14341/DM2003458-64.

53. Zilov A.V., Abdelaziz S.I., AlShammary A., Al Zahrani A., Amir A., Assaad Khalil S.H. et al. Mechanisms of action of metformin with special reference to cardiovascular protection. Diabetes Metab Res Rev. 2019;35(7):e3173. doi: 10.1002/dmrr.3173.

54. Luo F., Guo Y., Ruan G., Li X. Metformin promotes cholesterol efflux in macrophages by up-regulating FGF21 expression: a novel anti-atherosclerotic mechanism. Lipids Health Dis. 2016;15:109. doi: 10.1186/s12944-016-0281-9.

55. Jing Y., Wu F., Li D., Yang L., Li Q., Li R. Metformin improves obesity-associated inflammation by altering macrophages polarization. Mol Cell Endocrinol. 2018;461:256–264. doi: 10.1016/j.mce.2017.09.025.

56. Rodriguez J., Hiel S., Delzenne N.M. Metformin: old friend, new ways of action-implication of the gut microbiome? Curr Opin Clin Nutr Metab Care. 2018;21(4):294–301. doi: 10.1097/MCO.0000000000000468.

57. Ha J.-S., Yeom Y.-S., Jang J.-H., Kim Y.-H., Im J.I., Kim I.S., Yang S.-J. Antiinflammatory Effects of Metformin on Neuro-inflammation and NLRP3 Inflammasome Activation in BV-2 Microglial Cells. Biomed Sci Lett. 2019;25(1):92–98. doi: 10.15616/bsl.2019.25.1.92.

58. Johanns M., Lai Y.C., Hsu M.F., Jacobs R., Vertommen D., Van Sande J. et al. AMPK antagonizes hepatic glucagon-stimulated cyclic AMP signalling via phosphorylation-induced activation of cyclic nucleotide phosphodiesterase 4B. Nat Commun. 2016;7:10856. doi: 10.1038/ncomms10856.

59. Shpakov A.O., Derkach K.V. The Melanocortin Signal System of the Hypothalamus and Its Functional State in Type 2 Diabetes Mellitus and Metabolic Syndrome. Rossiyskiy fiziologicheskiy zhurnal im. I.M. Sechenova = Russian Journal of Physiology. 2017;103(5):504–517. (In Russ.) Available at:https://elibrary.ru/item.asp?id=29404783.

60. Moreira P.I. Metformin in the diabetic brain: friend or foe? Ann Transl Med. 2014;2(6):54. doi: 10.3978/j.issn.2305-5839.2014.06.10.

61. Piskovatska V., Stefanyshyn N., Storey K.B., Vaiserman A.M., Lushchak O. Metformin as a geroprotector: experimental and clinical evidence. Biogerontology. 2019;20(1):33–48. doi: 10.1007/s10522-018-9773-5.

62. Barzilai N., Crandall J.P., Kritchevsky S.B., Espeland M. A. Metformin as a Tool to Target Aging. Cell Metab. 2016;23(6):1060–1065. doi: 10.1016/j.cmet.2016.05.011.

63. Samuel S.M., Varghese E., Kubatka P., Triggle C.R., Büsselberg D. Metformin: The Answer to Cancer in a Flower? Current Knowledge and Future Prospects of Metformin as an Anti-Cancer Agent in Breast Cancer. Biomolecules. 2019;9(12):846. doi: 10.3390/biom9120846.

64. Safe S., Nair V., Karki K. Metformin-induced anticancer activities: recent insights. Biol Chem. 2018;399(4):321–335. doi: 10.1515/hsz-2017-0271.

65. Weng S., Luo Y., Zhang Z., Su X., Peng D. Effects of metformin on blood lipid profiles in nondiabetic adults: a meta-analysis of randomized controlled trials. Endocrine. 2020;67(2):305–317. doi: 10.1007/s12020-020-02190-y.

66. Zhou L., Liu H., Wen X., Peng Y., Tian Y., Zhao L. Effects of metformin on blood pressure in nondiabetic patients: a meta-analysis of randomized controlled trials. J Hypertens. 2017;35(1):18–26. doi: 10.1097/HJH.0000000000001119.

67. Malin S.K., Kashyap S.R. Effects of metformin on weight loss: potential mechanisms. Curr Opin Endocrinol Diabetes Obes. 2014;21(5):323–329. doi: 10.1097/MED.0000000000000095/

68. Araújo J.R., Martel F. Sibutramine effects on central mechanisms regulating energy homeostasis. Curr Neuropharmacol. 2012;10(1):49–52. doi: 10.2174/157015912799362788.

69. Stritecka H., Hlubik P., Hlubik J. Targeted weight reduction using Sibutramine. Translational biomedicine. 2010;1(3:1). Available at: https://www.transbiomedicine.com/translational-biomedicine/targeted-weightreduction-using-sibutramine.pdf.

70. Phillips C.L., Yee B.J., Trenell M.I., Magnussen J.S., Wang D., Banerjee D. et al. Changes in regional adiposity and cardio-metabolic function following a weight loss program with sibutramine in obese men with obstructive sleep apnea. J Clin Sleep Med. 2009;5(5):416–421. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2762711/

71. Gokcel A., Gumurdulu Y., Karakose H., Melek Ertorer E., Tanaci N., Bascil Tutuncu N., Guvener N. Evaluation of the safety and efficacy of sibutramine, orlistat and metformin in the treatment of obesity. Diabetes Obes Metab. 2002;4(1):49–55. doi: 10.1046/j.1463-1326.2002.00181.x.

72. Romantsova T.I. Sibutramine: efficacy and safety of prescribing in routine clinical practice. Ozhireniye i metabolism = Obesity and Metabolism. 2015;12(3):18–24. (In Russ.) doi: 10.14341/OMET2015318-24.

73. Chen K.Y., Brychta R.J., Abdul Sater Z., Cassimatis T.M., Cero C., Fletcher L.A. et al. Opportunities and challenges in the therapeutic activation of human energy expenditure and thermogenesis to manage obesity. J Biol Chem. 2020;295(7):1926–1942. doi: 10.1074/jbc.REV119.007363.

74. McGlashon J.M., Gorecki M.C., Kozlowski A.E., Thirnbeck C.K., Markan K.R., Leslie K.L. et al. Central serotonergic neurons activate and recruit thermogenic brown and beige fat and regulate glucose and lipid homeostasis. Cell Metab. 2015;21(5):692–705. doi: 10.1016/j.cmet.2015.04.008.

75. Dedov I.I., Melnichenko G.A., Troshina E.A., Mazurina N.V., Galieva M.O. Body Weight Reduction Associated with the Sibutramine Treatment: Overall Results of the PRIMAVERA Primary Health Care Trial. Obes Facts. 2018;11(4):335–343. doi: 10.1159/000488880.

76. Ametov A.S., P’yanykh O.P., Nevol’nikova A.O. Modern opportunities of metabolic health management in patients with obesity and carbohydtate metabolism disorders. Endokrinologiya: novosti, mneniya, obucheniye = Endocrinology: News, Opinions, Training. 2020;9(1):80–88. Available at: http://reduxin.ru/upload/iblock/285/sovremennie_vozmojnosti.pdf


Review

For citations:


Ruyatkina LA, Ruyatkin DS. Obesity: The Crossroads of Opinion, Knowledge, and Opportunity. Meditsinskiy sovet = Medical Council. 2020;(7):108-120. (In Russ.) https://doi.org/10.21518/2079-701X-2020-7-108-120

Views: 898


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)