Preview

Медицинский Совет

Расширенный поиск

Неинвазивные методы диагностики опухолей кожи и их потенциал применения для скрининга меланомы кожи: систематический обзор литературы

https://doi.org/10.21518/2079-701X-2020-9-102-120

Полный текст:

Аннотация

Введение. В настоящее время публикуются многочисленные исследования авторов разных стран, демонстрирующие эффективность неинвазивных методов диагностики меланомы.
Цель: систематизировать и сравнить данные о доступных неинвазивных технологиях в диагностике меланомы кожи, их механизмы, диагностическую эффективность, ограничения.
Материал и методы. Систематический поиск был проведен независимо в электронных базах данных PubMed и Cochrane Central Register of Controlled Trials (CENTRAL) до апреля 2020 г. согласно определенным критериям включения. Извлечение данных было проведено независимо с последующим обобщением с использованием описательных таблиц. Из-за неоднородности включенных исследований и ввиду этого невозможности проведения метаанализа мы выполнили повествовательное описание.
Результаты. Всего было найдено и проверено 765 потенциальных для включения публикаций, из которых в исследование были включены 53. По дизайну исследования были отнесены к исследованиям одномоментного дизайна – 40, к рандомизированным клиническим исследованиям – 7, к метаанализу – 6. Во включенных публикациях сообщались данные о 76 802 новообразованиях кожи, из которых 9070 – меланомы. Извлеченные данные были обобщены в описательных таблицах.
Заключение. С продолжающимся технологическим прогрессом развитие технологий вспомогательной визуализации в диагностике меланомы кожи должно идти по пути эффективной, экономически выгодной, простой диагностики.

Об авторах

О. Е. Гаранина
Приволжский исследовательский медицинский университет
Россия

Гаранина Оксана Евгеньевна, к.м.н., доцент кафедры кожных и венерических болезней; научный сотрудник, врач-онколог отделения реконструктивной и пластической хирургии Университетской клиники

Researcher ID: P-8082-2017; РИНЦ: SPIN: 6758-5913, Author ID: 595215

603005, Нижний Новгород, пл. Минина и Пожарского, д. 10/1



И. В. Самойленко
Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина
Россия

Самойленко Игорь Вячеславович, к.м.н., старший научный сотрудник отделения онкодерматологии

Researcher ID: AAQ-2321-2020; РИНЦ: SPIN: 3691-8923, Author ID: 520864

115478, Москва, Каширское шоссе, д. 24



И. Л. Шливко
Приволжский исследовательский медицинский университет
Россия

Шливко Ирена Леонидовна, д.м.н., заведующая кафедрой кожных и венерических болезней

Researcher ID: P-8690-2017; РИНЦ: SPIN: 8301-4815, Author ID: 595212

603005, Нижний Новгород, пл. Минина и Пожарского, д. 10/1



И. А. Клеменова
Приволжский исследовательский медицинский университет
Россия

Клеменова Ирина Александровна, д.м.н., профессор, первый проректор

Researcher ID: R-7945-2017; РИНЦ: SPIN: 8119-2480, Author ID: 343557

603005, Нижний Новгород, пл. Минина и Пожарского, д. 10/1



М. С. Незнахина
Приволжский исследовательский медицинский университет
Россия

Незнахина Мария Сергеевна, к.м.н., ассистент кафедры кожных и венерических болезней

603005, Нижний Новгород, пл. Минина и Пожарского, д. 10/1



Л. В. Демидов
Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина
Россия

Демидов Лев Вадимович, д.м.н., профессор, заведующий отделением онкодерматологии

РИНЦ: SPIN: 5362-6386, Author ID: 173317

115478, Москва, Каширское шоссе, д. 24 



Список литературы

1. Каприн А.Д., Старинский В.В., Петрова Г.В. (ред.). Злокачественные новообразования в России в 2018 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2019. 250 с. Режим доступа: https://oncology-association.ru/files/medstat/2018.pdf. Kaprin A.D., Starinskiy V.V., Petrova G.V. (eds.). Malignant neoplasms in Russia in 2018 (morbidity and mortality). Moscow: P.A. Hertsen Moscow Oncology Research Center – branch of FSBI NMRRC of the Ministry of Health of Russia; 2019. 250 p. (In Russ.) Available at: https://oncology-association.ru/files/medstat/2018.pdf.

2. Каприн А.Д., Старинский В.В., Петрова Г.В. (ред.) Состояние онкологической помощи населению России в 2018 году. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2019. Режим доступа: https://nnood.ru/wp-content/uploads/2019/04/Statichticheskijj-ezhegodnik-Gercena-2018.pdf. Kaprin A.D., Starinskiy V.V., Petrova G.V. (eds.) State of oncological care for the population of Russia in 2018. Moscow: P. A. Hertsen Moscow Oncology Research Center – branch of FSBI NMRRC of the Ministry of Health of Russia; 2019. (In Russ.) Available at: https://nnood.ru/wp-content/uploads/2019/04/Statichticheskijj-ezhegodnik-Gercena-2018.pdf.

3. Gershenwald J.E., Scolyer R.A., Hess K.R., Sondak V.K., Long G.V., Ross M.I. et al. Melanoma staging: Evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67(6):472–492. doi: 10.3322/caac.21409.

4. Breitbart E.W., Waldmann A., Nolte S., Capellaro M., Greinert R., Volkmer B. et al. Systematic skin cancer screening in Northern Germany. J Am Acad Dermatol. 2012;66(2):201–211. doi: 10.1016/j.jaad.2010.11.016.

5. Katalinic A., Eisemann N., Waldmann A. Skin Cancer Screening in Germany. Documenting Melanoma Incidence and Mortality From 2008 to 2013. Dtsch Arztebl Int. 2015;112(38):629–634. doi: 10.3238/arztebl.2015.0629.

6. Katalinic A., Waldmann A., Weinstock M.A., Geller A.C., Eisemann N., Greinert R. Does skin cancer screening save lives?: an observational study comparing trends in melanoma mortality in regions with and without screening. Cancer. 2012;118(21):5395–5402. doi: 10.1002/cncr.27566.

7. Weyers W. Screening for malignant melanoma-a critical assessment in historical perspective. Dermatol Pract Concept. 2018;8(2):89–103. doi: 10.5826/dpc.0802a06.

8. Johansson M., Brodersen J., Gotzsche P.C., Jorgensen K.J. Screening for reducing morbidity and mortality in malignant melanoma. Cochrane Database Syst Rev. 2019;(6):CD012352. doi: 10.1002/14651858.CD012352.pub2.

9. Bono A., Tolomio E., Trincone S., Bartoli C., Tomatis S., Carbone A. et al. Micro-melanoma detection: a clinical study on 206 consecutive cases of pigmented skin lesions with a diameter < or = 3 mm. Br J Dermatol. 2006;155(3):570–573. doi: 10.1111/j.1365-2133.2006.07396.x.

10. Moher D., Shamseer L., Clarke M., Ghersi D., Liberati A., Petticrew M. et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic reviews. 2015;4:1. doi: 10.1186/2046-4053-4-1.

11. Okhovat J.P., Beaulieu D., Tsao H., Halpern A.C., Michaud D.S., Shaykevich S. et al. The first 30 years of the American Academy of Dermatology skin cancer screening program: 1985–2014. JAAD. 2018;79(5):884–891.e3. doi: 10.1016/j.jaad.2018.05.1242.

12. Tromme I., Sacre L., Hammouch F., Legrand C., Marot L., Vereecken P. et al. Availability of digital dermoscopy in daily practice dramatically reduces the number of excised melanocytic lesions: results from an observational study. Br J Dermatol. 2012;167(4):778–786. doi: 10.1111/j.1365-2133.2012.11042.x.

13. Moncrieff M., Cotton S., Claridge E., Hall P. Spectrophotometric intracutaneous analysis: a new technique for imaging pigmented skin lesions. Br J Dermatol. 2002;146(3):448–457. doi: 10.1046/j.1365-2133.2002.04569.x.

14. Tomatis S., Carrara M., Bono A., Bartoli C., Lualdi M., Tragni G. et al. Automated melanoma detection with a novel multispectral imaging system: results of a prospective study. Physics in medicine and biology. 2005;50(8):1675–1687. doi: 10.1088/0031-9155/50/8/004.

15. Govindan K., Smith J., Knowles L., Harvey A., Townsend P., Kenealy J. Assessment of nurse-led screening of pigmented lesions using SIAscope. Journal of plastic, reconstructive & aesthetic surgery. 2007;60(6):639–645. doi: 10.1016/j.bjps.2006.10.003.

16. Haniffa M.A., Lloyd J.J., Lawrence C.M. The use of a spectrophotometric intracutaneous analysis device in the real-time diagnosis of melanoma in the setting of a melanoma screening clinic. Br J Dermatol. 2007;156(6):1350–1352. doi: 10.1111/j.1365-2133.2007.07932.x.

17. Carrara M., Bono A., Bartoli C., Colombo A., Lualdi M., Moglia D. et al. Multispectral imaging and artificial neural network: mimicking the management decision of the clinician facing pigmented skin lesions. Physics in Medicine and Biology. 2007;52(9):2599–2613. doi: 10.1088/0031-9155/52/9/018.

18. Glud M., Gniadecki R., Drzewiecki K.T. Spectrophotometric intracutaneous analysis versus dermoscopy for the diagnosis of pigmented skin lesions: prospective, double-blind study in a secondary reference centre. Melanoma Research. 2009;19(3):176–179. doi: 10.1097/CMR.0b013e328322fe5f.

19. Emery J.D., Hunter J., Hall P.N., Watson A.J., Moncrieff M., Walter F.M. Accuracy of SIAscopy for pigmented skin lesions encountered in primary care: development and validation of a new diagnostic algorithm. BMC dermatology. 2010;10:9. doi: 10.1186/1471-5945-10-9.

20. Walter F.M., Morris H.C., Humphrys E., Hall P.N., Prevost A.T., Burrows N. et al. Effect of adding a diagnostic aid to best practice to manage suspicious pigmented lesions in primary care: randomised controlled trial. BMJ. 2012;345:e4110. doi: 10.1136/bmj.e4110.

21. Elbaum M., Kopf A.W., Rabinovitz H.S., Langley R.G., Kamino H., Mihm M.C. Jr. et al. Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study. J Am Acad Dermatol. 2001;44(2):207–218. doi: 10.1067/mjd.2001.110395.

22. Friedman R.J., Gutkowicz-Krusin D., Farber M.J., Warycha M., SchneiderKels L., Papastathis N. et al. The diagnostic performance of expert dermoscopists vs a computer-vision system on small-diameter melanomas. Arch Dermatol. 2008;144(4):476–482. doi: 10.1001/archderm.144.4.476.

23. Monheit G., Cognetta A.B., Ferris L., Rabinovitz H., Gross K., Martini M. et al. The performance of MelaFind: a prospective multicenter study. Arch Dermatol. 2011;147(2):188–194. doi: 10.1001/archdermatol.2010.302.

24. Rigel D.S., Roy M., Yoo J., Cockerell C.J., Robinson J.K., White R. Impact of guidance from a computer-aided multispectral digital skin lesion analysis device on decision to biopsy lesions clinically suggestive of melanoma. Arch Dermatology. 2012;148(4):541–543. doi: 10.1001/archdermatol.2011.3388.

25. Wells R., Gutkowicz-Krusin D., Veledar E., Toledano A., Chen S.C. Comparison of diagnostic and management sensitivity to melanoma between dermatologists and MelaFind: a pilot study. Arch Dermatol. 2012;148(9):1083–1084. doi: 10.1001/archdermatol.2012.946.

26. Hauschild A., Chen S.C., Weichenthal M., Blum A., King H.C., Goldsmith J. et al. To excise or not: impact of MelaFind on German dermatologists’ decisions to biopsy atypical lesions. JDDG. 2014;12(7):606–614. doi: 10.1111/ddg.12362.

27. Lui H., Zhao J., McLean D., Zeng H. Real-time Raman spectroscopy for in vivo skin cancer diagnosis. Cancer Res. 2012;72(10):2491–2500. doi: 10.1158/0008-5472.CAN-11-4061.

28. Ferrante di Ruffano L., Dinnes J., Deeks J.J., Chuchu N., Bayliss S.E., Davenport C. et al. Optical coherence tomography for diagnosing skin cancer in adults. Cochrane Database Syst Rev. 2018;12(12):CD013189. doi: 10.1002/14651858.CD013189.

29. Gambichler T., Plura I., Schmid-Wendtner M., Valavanis K., Kulichova D., Stucker M. et al. High-definition optical coherence tomography of melanocytic skin lesions. J Biophotonics. 2015;8(8):681–686. doi: 10.1002/jbio.201400085.

30. Pellacani G., Cesinaro A.M., Seidenari S. Reflectance-mode confocal microscopy of pigmented skin lesions – improvement in melanoma diagnostic specificity. JAAD. 2005;53(6):979–985. doi: 10.1016/j.jaad.2005.08.022.

31. Gerger A., Koller S., Weger W., Richtig E., Kerl H., Samonigg H. et al. Sensitivity and specificity of confocal laser-scanning microscopy for in vivo diagnosis of malignant skin tumors. Cancer. 2006;107(1):193–200. doi: 10.1002/cncr.21910.

32. Langley R.G., Walsh N., Sutherland A.E., Propperova I., Delaney L., Morris S.F., Gallant C. The diagnostic accuracy of in vivo confocal scanning laser microscopy compared to dermoscopy of benign and malignant melanocytic lesions: a prospective study. Dermatolog. 2007;215(4):365–372. doi: 10.1159/000109087.

33. Pellacani G., Guitera P., Longo C., Avramidis M., Seidenari S., Menzies S. The impact of in vivo reflectance confocal microscopy for the diagnostic accuracy of melanoma and equivocal melanocytic lesions. J Invest Dermatol. 2007;127(12):2759–2765. doi: 10.1038/sj.jid.5700993.

34. Gerger A., Hofmann-Wellenhof R., Langsenlehner U., Richtig E., Koller S., Weger W. et al. In vivo confocal laser scanning microscopy of melanocytic skin tumours: diagnostic applicability using unselected tumour images. Br J Dermatol. 2008;158(2):329–333. doi: 10.1111/j.1365-2133.2007.08389.x.

35. Guitera P., Pellacani G., Longo C., Seidenari S., Avramidis M., Menzies S.W. In vivo reflectance confocal microscopy enhances secondary evaluation of melanocytic lesions. J Invest Dermatol. 2009;129(1):131–138. doi: 10.1038/jid.2008.193.

36. Segura S., Puig S., Carrera C., Palou J., Malvehy J. Development of a twostep method for the diagnosis of melanoma by reflectance confocal microscopy. JAAD. 2009;61(2):216–229. doi: 10.1016/j.jaad.2009.02.014.

37. Guitera P., Pellacani G., Crotty K.A., Scolyer R.A., Li L.X., Bassoli S. et al. The impact of in vivo reflectance confocal microscopy on the diagnostic accuracy of lentigo maligna and equivocal pigmented and nonpigmented macules of the face. J Invest Dermatol. 2010;130(8):2080–2091. doi: 10.1038/jid.2010.84.

38. Curchin C.E., Wurm E.M., Lambie D., Longo C., Pellacani G., Soyer H.P. First experiences using reflectance confocal microscopy on equivocal skin lesions in Queensland. Australas J Dermatol. 2011;52(2):89–97. doi: 10.1111/j.1440-0960.2011.00756.x.

39. Guitera P., Menzies S.W., Longo C., Cesinaro A.M., Scolyer R.A., Pellacani G. In vivo confocal microscopy for diagnosis of melanoma and basal cell carcinoma using a two-step method: analysis of 710 consecutive clinically equivocal cases. J Invest Dermatol. 2012;132(10):2386–2394. doi: 10.1038/jid.2012.172.

40. Longo C., Farnetani F., Ciardo S., Cesinaro A.M., Moscarella E., Ponti G. et al. Is confocal microscopy a valuable tool in diagnosing nodular lesions? A study of 140 cases. Br J Dermat. 2013;169(1):58–67. doi: 10.1111/bjd.12259.

41. Stevenson A.D., Mickan S., Mallett S., Ayya M. Systematic review of diagnostic accuracy of reflectance confocal microscopy for melanoma diagnosis in patients with clinically equivocal skin lesions. Dermatol Pract Concept. 2013;3(4):19–27. doi: 10.5826/dpc.0304a05.

42. Cinotti E., Perrot J.L., Campolmi N., Labielle B., Espinasse M., Grivet D. et al. The role of in vivo confocal microscopy in the diagnosis of eyelid margin tumors: 47 cases. J Am Acad Dermatol. 2014;71(5):912–918e2. doi: 10.1016/j.jaad.2014.05.060.

43. Alarcon I., Carrera C., Palou J., Alos L., Malvehy J., Puig S. Impact of in vivo reflectance confocal microscopy on the number needed to treat melanoma in doubtful lesions. Br J Dermatol. 2014;170(4):802–808. doi: 10.1111/bjd.12678.

44. Ferrari B., Pupelli G., Farnetani F., De Carvalho N.T., Longo C., Reggiani C. et al. Dermoscopic difficult lesions: an objective evaluation of reflectance confocal microscopy impact for accurate diagnosis. JEADV. 2015;29(6):1135–1140. doi: 10.1111/jdv.12769.

45. Lovatto L., Carrera C., Salerni G., Alos L., Malvehy J., Puig S. In vivo reflectance confocal microscopy of equivocal melanocytic lesions detected by digital dermoscopy follow-up. JEADV. 2015;29(10):1918–1925. doi: 10.1111/jdv.13067.

46. Farnetani F., Scope A., Braun R.P., Gonzalez S., Guitera P., Malvehy J. et al. Skin Cancer Diagnosis With Reflectance Confocal Microscopy: Reproducibility of Feature Recognition and Accuracy of Diagnosis. JAMA Dermatol. 2015;151(10):1075–1080. doi: 10.1001/jamadermatol.2015.0810.

47. Song E., Grant-Kels J.M., Swede H., D’Antonio J.L., Lachance A., Dadras S.S. et al. Paired comparison of the sensitivity and specificity of multispectral digital skin lesion analysis and reflectance confocal microscopy in the detection of melanoma in vivo: A cross-sectional study. JAAD. 2016;75(6):1187–1192.e2. doi: 10.1016/j.jaad.2016.07.022.

48. Witkowski A.M., Łudzik J., DeCarvalho N., Ciardo S., Longo C., DiNardo A. et al. Non-invasive diagnosis of pink basal cell carcinoma: how much can we rely on dermoscopy and reflectance confocal microscopy? Skin Res Technol. 2016;22(2):230–237. doi: 10.1111/srt.12254.

49. Dinnes J., Deeks J.J., Saleh D., Chuchu N., Bayliss S.E., Patel L. et al. Reflectance confocal microscopy for diagnosing cutaneous melanoma in adults. Cochrane Database Syst Rev. 2018;(12):Cd013190. doi: 10.1002/14651858.CD013190.

50. Pezzini C., Kaleci S., Chesterc J., Farnetani F., Longo C., Pellacani G. Reflectance confocal microscopy diagnostic accuracy for malignant melanoma in different clinical settings: systematic review and meta-analysis. JEADV. 2020. doi: 10.1111/jdv.16248.

51. Seidenari S., Arginelli F., Dunsby C., French P.M., Konig K., Magnoni C. et al. Multiphoton laser tomography and fluorescence lifetime imaging of melanoma: morphologic features and quantitative data for sensitive and specific non-invasive diagnostics. PloS One. 2013;8(7):e70682. doi: 10.1371/journal.pone.0070682.

52. Dimitrow E., Ziemer M., Koehler M.J., Norgauer J., Konig K., Elsner P., Kaarz M. Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma. J Invest Dermatol. 2009;129(7):1752–1758. doi: 10.1038/jid.2008.439.

53. Leupold D., Scholz M., Stankovic G., Reda J., Buder S., Eichhorn R. et al. The stepwise two-photon excited melanin fluorescence is a unique diagnostic tool for the detection of malignant transformation in melanocytes. Pigment Cell Melanoma Res. 2011;24(3):438–445. doi: 10.1111/j.1755-148X.2011.00853.x.

54. Harland C.C., Kale S.G., Jackson P., Mortimer P.S., Bamber J.C. Differentiation of common benign pigmented skin lesions from melanoma by high-resolution ultrasound. BJD. 2000;143(2):281–289. doi: 10.1046/j.1365-2133.2000.03652.x.

55. Bessoud B., Lassau N., Koscielny S., Longvert C., Avril M.F., Duvillard P. et al. High-frequency sonography and color Doppler in the management of pigmented skin lesions. Ultrasound in Medicine & Biology. 2003;29(6):875–879. doi: 10.1016/S0301-5629(03)00035-8.

56. Rallan D., Bush N.L., Bamber J.C., Harland C.C. Quantitative discrimination of pigmented lesions using three-dimensional high-resolution ultrasound reflex transmission imaging. J Invest Dermatol. 2007;127(1):189–195. doi: 10.1038/sj.jid.5700554.

57. Dinnes J., Bamber J., Chuchu N., Bayliss S.E., Takwoingi Y., Davenport C. et al. High-frequency ultrasound for diagnosing skin cancer in adults. Cochrane Database Syst Rev. 2018;(12):Cd013188. doi: 10.1002/14651858.CD013188.

58. Har-Shai Y., Glickman Y.A., Siller G., McLeod R., Topaz M., Howe C. et al. Electrical impedance scanning for melanoma diagnosis: a validation study. Plastic and Reconstructive Surgery. 2005;116(3):782–790. doi: 10.1097/01.prs.0000176258.52201.22.

59. Aberg P., Nicander I., Hansson J., Geladi P., Holmgren U., Ollmar S. Skin cancer identification using multifrequency electrical impedance – a potential screening tool. IEEE Transactions on Biomedical Engineering. 2004;51(12):2097–2102. doi: 10.1109/TBME.2004.836523.

60. Aberg P., Geladi P., Nicander I., Hansson J., Holmgren U., Ollmar S. Noninvasive and microinvasive electrical impedance spectra of skin cancer – a comparison between two techniques. Skin Res Technol. 2005;11(4):281– 286. doi: 10.1111/j.0909-725X.2005.00125.x.

61. Aberg P., Birgersson U., Elsner P., Mohr P., Ollmar S. Electrical impedance spectroscopy and the diagnostic accuracy for malignant melanoma. Exp Dermatol. 2011;20(8):648–652. doi: 10.1111/j.1600-0625.2011.01285.x.

62. Mohr P., Birgersson U., Berking C., Henderson C., Trefzer U., Kemeny L. et al. Electrical impedance spectroscopy as a potential adjunct diagnostic tool for cutaneous melanoma. Skin Res Technol. 2013;19(2):75–83. doi: 10.1111/srt.12008.

63. Malvehy J., Curiel-Lewandrowski C., Mohr P., Hofmann-Wellenhof R., Motley R., Berking C. et al. Clinical performance of the Nevisense system in cutaneous melanoma detection: an international, multi-centre, prospective and blinded clinical trial on efficacy and safety. Br J Dermatol. 2014;171(5):1099–1107. doi: 10.1111/bjd.13121.

64. Rosenberg A., Meyerle J.H. Total-body photography in skin cancer screening: the clinical utility of standardized imaging. Cutis. 2017;99(5):312– 316. Available at: https://pubmed.ncbi.nlm.nih.gov/28632800/

65. Berk-Krauss J., Polsky D., Stein J.A. Mole Mapping for Management of Pigmented Skin Lesions. Dermatol Clin. 2017;35(4):439–445. doi: 10.1016/j.det.2017.06.004.

66. Mikailov A., Blechman A. Gigapixel photography for skin cancer surveillance: a novel alternative to total-body photography. Cutis. 2013;92(5):241–213.

67. Salerni G., Carrera C., Lovatto L., Puig-Butille J.A., Badenas C., Plana E. et al. Benefits of total body photography and digital dermatoscopy (“twostep method of digital follow-up”) in the early diagnosis of melanoma in patients at high risk for melanoma. JAAD. 2012;67(1):e17–27. doi: 10.1016/j.jaad.2011.04.008.

68. Dengel L.T., Petroni G.R., Judge J., Chen D., Acton S.T., Schroen A.T. et al. Total body photography for skin cancer screening. Int Dermatol. 2015;54(11):1250–124. doi: 10.1111/ijd.12593.

69. de Menezes M., Rosati R., Ferrario V.F., Sforza C. Accuracy and reproducibility of a 3-dimensional stereophotogrammetric imaging system. J Oral Maxillofac Surgery. 2010;68(9):2129–2135. doi: 10.1016/j.joms.2009.09.036.

70. Heike C.L., Upson K., Stuhaug E., Weinberg S.M. 3D digital stereophotogrammetry: a practical guide to facial image acquisition. Head Face Med. 2010;6:18. doi: 10.1186/1746-160X-6-18.

71. March J., Hand M., Grossman D. Practical application of new technologies for melanoma diagnosis: Part I. Noninvasive approaches. JAAD. 2015;72(6):929–941;quiz 41-2. doi: 10.1016/j.jaad.2015.02.1138.

72. Hibler B.P., Qi Q., Rossi A.M. Current state of imaging in dermatology. Sem Cutan Med Sur. 2016;35(1):2–8. doi: 10.12788/j.sder.2016.00 1.

73. Pehamberger H., Steiner A., Wolff K. In vivo epiluminescence microscopy of pigmented skin lesions. I. Pattern analysis of pigmented skin lesions. JAAD. 1987;17(4):571–583. doi: 10.1016/S0190-9622(87)70239-4.

74. Maley A., Rhodes A.R. Cutaneous melanoma: preoperative tumor diameter in a general dermatology outpatient setting. Dermatologic Surgery. 2014;40(4):446–454. doi: 10.1111/dsu.12454.

75. Blum A., Kreusch J., Stolz W., Haenssle H., Braun R., Hofmann-Wellenhof R. et al. Dermoscopy for malignant and benign skin tumors: Indication and standardized terminology. Der Hautarzt. 2017;68(8):653–673. (In German) doi: 10.1007/s00105-017-4013-5.

76. Stolz W., Cognetta A.B., Pillet L., Abmayer W., Holzel D. et al. ABCD rule of dermatoscopy: a new practical method for early recognition of malignant melanoma. Eur J Dermatol. 1994;4(7):521–527.

77. Blum A., Rassner G., Garbe C. Modified ABC-point list of dermoscopy: A simplified and highly accurate dermoscopic algorithm for the diagnosis of cutaneous melanocytic lesions. JAAD. 2003;48(5):672–678. doi: 10.1067/mjd.2003.282.

78. Argenziano G., Cerroni L., Zalaudek I., Staibano S., Hofmann-Wellenhof R., Arpaia N. et al. Accuracy in melanoma detection: a 10-year multicenter survey. JAAD. 2012;67(1):54–59. doi: 10.1016/j.jaad.2011.07.019.

79. Kittler H., Seltenheim M., Dawid M., Pehamberger H., Wolff K., Binder M. Morphologic changes of pigmented skin lesions: a useful extension of the ABCD rule for dermatoscopy. JAAD. 1999;40(4):558–562. doi: 10.1016/S0190-9622(99)70437-8.

80. Argenziano G., Fabbrocini G., Carli P., De Giorgi V., Sammarco E., Delfino M. Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions. Comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch Dermatol. 1998;134(12):1563–1570. doi: 10.1001/archderm.134.12.1563.

81. Argenziano G., Catricala C., Ardigo M., Buccini P., De Simone P., Eibenschutz L. et al. Seven-point checklist of dermoscopy revisited. Br J Dermatol. 2011;164(4):785–790. doi: 10.1111/j.1365-2133.2010.10194.x.

82. Stanganelli I., Longo C., Mazzoni L., Magi S., Medri M., Lanzanova G. et al. Integration of reflectance confocal microscopy in sequential dermoscopy follow-up improves melanoma detection accuracy. Br J Dermatol. 2015;172(2):365–371. doi: 10.1111/bjd.13373.

83. Soyer H.P., Argenziano G., Zalaudek I., Corona R., Sera F., Talamini R. et al. Three-point checklist of dermoscopy. A new screening method for early detection of melanoma. Dermatology. 2004;208(1):27–31. doi: 10.1159/000075042.

84. di Meo N., Stinco G., Bonin S., Gatti A., Trevisini S., Damiani G. et al. CASH algorithm versus 3-point checklist and its modified version in evaluation of melanocytic pigmented skin lesions: The 4-point checklist. J Dermatol. 2016;43(6):682–685. doi: 10.1111/1346-8138.13201.

85. Kenet R.O., Fitzpatrick T.B. Reducing mortality and morbidity of cutaneous melanoma: a six year plan. B). Identifying high and low risk pigmented lesions using epiluminescence microscopy. J Dermatol. 1994;21(11):881– 884. doi: 10.1111/j.1346-8138.1994.tb03306.x.

86. Ascierto P.A., Satriano R.A., Palmieri G., Parasole R., Bosco L., Castello G. Epiluminescence microscopy as a useful approach in the early diagnosis of cutaneous malignant melanoma. Melanoma Res. 1998;8(6):529–537. doi: 10.1097/00008390-199812000-00008.

87. Ascierto P.A., Palmieri G., Botti G., Satriano R.A., Stanganelli I., Bono R. et al. Early diagnosis of malignant melanoma: Proposal of a working formulation for the management of cutaneous pigmented lesions from the Melanoma Cooperative Group. Int J Oncol. 2003;22(6):1209–1215. Available at: https:// www.researchgate.net/publication/10767067_Early_diagnosis_of_malignant_ melanoma_Proposal_of_a_working_formulation_for_the_management_of_ cutaneous_pigmented_lesions_from_the_Melanoma_Cooperative_Group.

88. Ascierto P.A., Palla M., Ayala F., De Michele I., Caraco C., Daponte A. et al. The role of spectrophotometry in the diagnosis of melanoma. BMC Dermatology. 2010;10:5. doi: 10.1186/1471-5945-10-5.

89. Menzies S.W., Ingvar C., Crotty K.A., McCarthy W.H. Frequency and morphologic characteristics of invasive melanomas lacking specific surface microscopic features. Arch Dermatol. 1996;132(10):1178–1182.

90. Dal Pozzo V., Benelli C., Roscetti E. The seven features for melanoma: a new dermoscopic algorithm for the diagnosis of malignant melanoma. Eur J Dermatol. 1999;9(4):303–308. Avaialable at: https://www.jle.com/en/revues/ejd/e-docs/the_seven_features_for_melanoma_a_new_dermoscopic_algorithm_for_the_diagnosis_of_malignant_melanma_100088/article.phtml.

91. Rosendahl C., Tschandl P., Cameron A., Kittler H. Diagnostic accuracy of dermatoscopy for melanocytic and nonmelanocytic pigmented lesions. JAAD. 2011;64(6):1068–1073. doi: 10.1016/j.jaad.2010.03.039.

92. Dolianitis C., Kelly J., Wolfe R., Simpson P. Comparative performance of 4 dermoscopic algorithms by nonexperts for the diagnosis of melanocytic lesions. Arch Dermatol. 2005;141(8):1008–1014. doi: 10.1001/archderm.141.8.1008.

93. Henning J.S., Dusza S.W., Wang S.Q., Marghoob A.A., Rabinovitz H.S., Polsky D. et al. The CASH (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy. JAAD. 2007;56(1):45–52. doi: 10.1016/j.jaad.2006.09.003.

94. Henning J.S., Stein J.A., Yeung J., Dusza S.W., Marghoob A.A., Rabinovitz H.S. et al. CASH algorithm for dermoscopy revisited. Arch Dermatol. 2008;144(4):554–555. doi: 10.1001/archderm.144.4.554.

95. Dinnes J., Chuchu N., Ferrante di Ruffano L., Matin R.N., Thomson D.R., Wong K.Y. et al. Dermoscopy, with and without visual inspection, for diagnosing melanoma in adults. Cochrane Database Syst Rev. 2018;12(12):CD011902. doi: 10.1002/14651858.CD011902.pub2.

96. Yelamos O., Braun R.P., Liopyris K., Wolner Z.J., Kerl K., Gerami P. Usefulness of dermoscopy to improve the clinical and histopathologic diagnosis of skin cancers. JAAD. 2019;80(2):365–377. doi: 10.1016/j.jaad.2018.07.072.

97. Stanganelli I., Serafini M., Bucch L. A cancer-registry-assisted evaluation of the accuracy of digital epiluminescence microscopy associated with clinical examination of pigmented skin lesions. Dermatology. 2000;200(1):11–16. doi: 10.1159/000018308.

98. Lallas A., Longo C., Manfredini M., Benati E., Babino G., Chinazzo C. et al. Accuracy of Dermoscopic Criteria for the Diagnosis of Melanoma In Situ. JAMA Dermatol. 2018;154(4):414–419. doi: 10.1001/jamadermatol.2017.6447.

99. Papageorgiou V., Apalla Z., Sotiriou E., Papageorgiou C., Lazaridou E., Vakirlis S. et al. The limitations of dermoscopy: false-positive and falsenegative tumours. JEADV. 2018;32(6):879–888. doi: 10.1111/jdv.14782.

100. Guida S., Pellacani G., Cesinaro A.M., Moscarella E., Argenziano G., Farnetani F. Spitz naevi and melanomas with similar dermoscopic patterns: can confocal microscopy differentiate? Br J Dermatol. 2016;174(3):610–616. doi: 10.1111/bjd.14286.

101. Miteva M., Lazova R. Spitz nevus and atypical spitzoid neoplasm. Seminars in Cutaneous Medicine and Surgery. 2010;29(3):165–173. doi: 10.1016/j.sder.2010.06.003.

102. Weber P., Tschandl P., Sinz C., Kittler H. Dermatoscopy of Neoplastic Skin Lesions: Recent Advances, Updates, and Revisions. Curr Treat Options Oncol. 2018;19(11):56. doi: 10.1007/s11864-018-0573-6.

103. Hosking A.M., Coakley B.J., Chang D., Talebi-Liasi F., Lish S., Lee S.W. et al. Hyperspectral imaging in automated digital dermoscopy screening for melanoma. Lasers in Surgery and Medicine. 2019;51(3):214–222. doi: 10.1002/lsm.23055.

104. Dellatorre G., Gadens G.A. Wide area digital dermoscopy. JAAD. 2019;80(6):e153. doi: 10.1016/j.jaad.2018.12.019.

105. Salerni G., Teran T., Puig S., Malvehy J., Zalaudek I., Argenziano G., Kittler H. Meta-analysis of digital dermoscopy follow-up of melanocytic skin lesions: a study on behalf of the International Dermoscopy Society. J Eur Acad Dermatol Venereol. 2013;27(7):805–814. doi: 10.1111/jdv.12032.

106. Hall P.N., Hunter J.E., Walter F.M., Norris P. Use of a spectrophotometric intracutaneous analysis device in the real-time diagnosis of melanoma. Br J Dermatol. 2008;158(2):420–421; author reply 3-4. doi: 10.1111/j.1365-2133.2007.08324.x.

107. Winkelmann R.R., Yoo J., Tucker N., White R., Rigel D.S. Assessment of a Diagnostic Predictive Probability Model Provided by a Multispectral Digital Skin Lesion Analysis Device for Melanoma and Other High-risk Pigmented Lesions and its Impact on Biopsy Decisions. J Clin Aesthet Dermatol. 2014;7(12):16–18. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4285445/

108. Shrivastava V., Bailin P., Elliott J., Bacnik E., Gastman B., Bergfeld W. et al. Histopathologic correlation of high-risk MelaFind(TM) lesions: a 3-year experience from a high-risk pigmented lesion clinic. Int J Dermatol. 2019;58(5):569–576. doi: 10.1111/ijd.14336.

109. Fink C., Jaeger C., Jaeger K., Haenssle H.A. Diagnoseleistung Des MelaFind-Geräts Im Klinischen Alltag. J Dtsch Dermatol Ges. 2017;15(4):414–420. doi: 10.1111/ddg.13220_g.

110. Cukras A.R. On the comparison of diagnosis and management of melanoma between dermatologists and MelaFind. JAMA Dermatol. 2013;149(5):622–623. doi: 10.1001/jamadermatol.2013.3405.

111. Wang W., Zhao J., Short M., Zeng H. Real-time in vivo cancer diagnosis using Raman spectroscopy. Journal of Biophotonics. 2014;8(7):527–545. doi: 10.1002/jbio.201400026.

112. Zhao J., Lui H., Kalia S., Zeng H. Real-time Raman spectroscopy for automatic in vivo skin cancer detection: an independent validation. Anal Bioanal Chem. 2015;407(27):8373–8379. doi: 10.1007/s00216-015-8914-9.

113. Kourkoumelis N., Balatsoukas I., Moulia V., Elka A., Gaitanis G., Bassukas I.D. Advances in the in Vivo Raman Spectroscopy of Malignant Skin Tumors Using Portable Instrumentation. Int J Mol Sci. 2015;16(7):14554–14570. doi: 10.3390/ijms160714554.

114. Welzel J., Lankenau E., Birngruber R., Engelhardt R. Optical coherence tomography of the human skin. JAAD. 1997;37(6):958–963. doi: 10.1016/S0190-9622(97)70072-0.

115. Hussain A.A., Themstrup L., Jemec G.B. Optical coherence tomography in the diagnosis of basal cell carcinoma. Arch Dermatol Res. 2015;307(1):1– 10. doi: 10.1007/s00403-014-1498-y.

116. Olsen J., Themstrup L., Jemec G.B. Optical coherence tomography in dermatology. Giornale italiano di dermatologia e venereologia: Organo Ufficiale. Societa italiana di dermatologia e sifilografia. 2015;150(5):603–615.

117. Que S.K.T. Research Techniques Made Simple: Noninvasive Imaging Technologies for the Delineation of Basal Cell Carcinomas. J Invest Dermatol. 2016;136(4):e33–e38. doi: 10.1016/j.jid.2016.02.012.

118. Alawi S.A., Kuck M., Wahrlich C., Batz S., McKenzie G., Fluhr J.W. et al. Optical coherence tomography for presurgical margin assessment of nonmelanoma skin cancer – a practical approach. Exp Dermatol. 2013;22(8):547–551. doi: 10.1111/exd.12196.

119. Boone M., Jemec G.B., Del Marmol V. High-definition optical coherence tomography enables visualization of individual cells in healthy skin: comparison to reflectance confocal microscopy. Exp Dermatol. 2012;21(10):740–744. doi: 10.1111/j.1600-0625.2012.01569.x.

120. de Giorgi V., Stante M., Massi D., Mavilia L., Cappugi P., Carli P. Possible histopathologic correlates of dermoscopic features in pigmented melanocytic lesions identified by means of optical coherence tomography. Exp Dermatol. 2005;14(1):56–59. doi: 10.1111/j.0906-6705.2005.00229.x.

121. Alex A., Weingast J., Weinigel M., Kellner-Hofer M., Nemecek R., Binder M. et al. Three-dimensional multiphoton/optical coherence tomography for diagnostic applications in dermatology. J Biophotonics. 2013;6(4):352– 362. doi: 10.1002/jbio.201200085.

122. Jalilian E., Xu Q., Horton L., Fotouhi A., Reddy S., Manwar R. et al. Contrastenhanced optical coherence tomography for melanoma detection: An in vitro study. J Biophotonics. 2020;13(5):e201960097. doi: 10.1002/jbio.201960097.

123. Que S.K., Fraga-Braghiroli N., Grant-Kels J.M., Rabinovitz H.S., Oliviero M., Scope A. Through the looking glass: Basics and principles of reflectance confocal microscopy. JAAD. 2015;73(2):276–284. doi: 10.1016/j. jaad.2015.04.047.

124. Hibler B.P., Yelamos O., Cordova M., Sierra H., Rajadhyaksha M., Nehal K.S., Rossi A.M. Handheld reflectance confocal microscopy to aid in the management of complex facial lentigo maligna. Cutis. 2017;99(5):346–352. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5569302/

125. Kumagai K., Koike H., Nagaoka R., Sakai S., Kobayashi K., Saijo Y. Highresolution ultrasound imaging of human skin in vivo by using threedimensional ultrasound microscopy. Ultrasound in Medicine & Biology. 2012;38(10):1833–1838. doi: 10.1016/j.ultrasmedbio.2012.05.012.

126. Dalimier E., Salomon D. Full-field optical coherence tomography: a new technology for 3D high-resolution skin imaging. Dermatology. 2012;224(1):84–92. doi: 10.1159/000337423.

127. Stefanowska J., Zakowiecki D., Cal K. Magnetic resonance imaging of the skin. JJEADV. 2010;24(8):875–880. doi: 10.1111/j.1468-3083.2010.03588.x.

128. Dinnes J., Deeks J.J., Chuchu N., Saleh D., Bayliss S.E., Takwoingi Y. et al. Reflectance confocal microscopy for diagnosing keratinocyte skin cancers in adults. Cochrane Database Syst Rev. 2018;12(12):Cd013191. doi: 10.1002/14651858.CD013191.

129. Agozzino M., Ferrari A., Cota C., Franceschini C., Buccini P., Eibenshutz L., Ardigo M. Reflectance confocal microscopy analysis of equivocal melanocytic lesions with severe regression. Skin Res Technol. 2018;24(1):9–15. doi: 10.1111/srt.12382.

130. Scope A., Benvenuto-Andrade C., Agero A.L., Malvehy J., Puig S., Rajadhyaksha M. et al. In vivo reflectance confocal microscopy imaging of melanocytic skin lesions: consensus terminology glossary and illustrative images. JAAD. 2007;57(4):644–658. doi: 10.1016/j.jaad.2007.05.044.

131. Gadjiko M., Rossi A.M. Ex vivo confocal microscopy: a diagnostic tool for skin malignancies. Cutis. 2017;100(2):81–83. Available at: https://mdedge-files-live.s3.us-east-2.amazonaws.com/files/s3fs-public/Document/August-2017/CT100002081.PDF.

132. Chi C.C. Dermoscopy and reflectance confocal microscopy for early diagnosis of amelanotic/hypomelanotic melanoma: still a long way to go? Br J Dermatol. 2020. doi: 10.1111/bjd.18893.

133. Pellacani G., Pepe P., Casari A., Longo C. Reflectance confocal microscopy as a second-level examination in skin oncology improves diagnostic accuracy and saves unnecessary excisions: a longitudinal prospective study. Br J Dermatol. 2014;171(5):1044–1051. doi: 10.1111/bjd.13148.

134. Konig K. Clinical multiphoton tomography. J Biophotonics. 2008;1(1):13– 23. doi: 10.1002/jbio.200710022.

135. Fink C., Haenssle H.A. Strategies for the noninvasive diagnosis of melanoma. Hautarzt. 2016;67(7):519–528. (In German) doi: 10.1007/s00105-016-3796-0.

136. Fink C., Haenssle H.A. Non-invasive tools for the diagnosis of cutaneous melanoma. Skin Res Technol. 2016;23(3):261–271. doi: 10.1111/srt.12350.

137. Konig K. Review: Clinical in vivo multiphoton FLIM tomography. Methods and Applications in Fluorescence. 2020;8(3):034002. doi: 10.1088/2050-6120/ab8808.

138. Dimitrow E., Riemann I., Ehlers A., Koehler M.J., Norgauer J., Elsner P. et al. Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis. Exp Dermatol. 2009;18(6):509–515. doi: 10.1111/j.1600-0625.2008.00815.x.

139. Konig K., Speicher M., Buckle R., Reckfort J., McKenzie G., Welzel J. et al. Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases. J Biophotonics. 2009;2(6- 7):389–397. doi: 10.1002/jbio.200910013.

140. Graf B.W., Boppart S.A. Multimodal In Vivo Skin Imaging with Integrated Optical Coherence and Multiphoton Microscopy. IEEE J Sel Top Quantum Electron. 2012;18(4):1280–1286. doi: 10.1109/JSTQE.2011.2166377.

141. Klemp M., Meinke M.C., Weinigel M., Rowert-Huber H.J., Konig K., Ulrich M. et al. Comparison of morphologic criteria for actinic keratosis and squamous cell carcinoma using in vivo multiphoton tomography. Exp Dermatol. 2016;25(3):218–222. doi: 10.1111/exd.12912.

142. Cameron M.C., Lee E., Hibler B.P., Giordano C.N., Barker C.A., Mori S. et al. Basal cell carcinoma: Contemporary approaches to diagnosis, treatment, and prevention. JAAD. 2019;80(2):321–339. doi: 10.1016/j.jaad.2018.02.083.

143. Ulrich M., Klemp M., Darvin M.E., Konig K., Lademann J., Meinke M.C. In vivo detection of basal cell carcinoma: comparison of a reflectance confocal microscope and a multiphoton tomograph. J Biomed Optics. 2013;18(6):61229. doi: 10.1117/1.JBO.18.6.061229.

144. Patalay R., Talbot C., Alexandrov Y., Lenz M.O., Kumar S., Warren S. et al. Multiphoton multispectral fluorescence lifetime tomography for the evaluation of basal cell carcinomas. PloS One. 2012;7(9):e43460. doi: 10.1371/journal.pone.0043460.

145. Manfredini M., Arginelli F., Dunsby C., French P., Talbot C., Konig K. et al. High-resolution imaging of basal cell carcinoma: a comparison between multiphoton microscopy with fluorescence lifetime imaging and reflectance confocal microscopy. Skin Res Technol. 2013;19(1):e433–443. doi: 10.1111/j.1600-0846.2012.00661.x.

146. Seidenari S., Arginelli F., Dunsby C., French P., Konig K., Magnoni C. et al. Multiphoton laser tomography and fluorescence lifetime imaging of basal cell carcinoma: morphologic features for non-invasive diagnostics. Exp Dermatol. 2012;21(11):831–836. doi: 10.1111/j.1600-0625.2012.01554.x.

147. Seidenari S., Arginelli F., Bassoli S., Cautela J., Cesinaro A.M., Guanti M. et al. Diagnosis of BCC by multiphoton laser tomography. Skin Res Technol. 2013;19(1):e297–304. doi: 10.1111/j.1600-0846.2012.00643.x.

148. Balu M., Zachary C.B., Harris R.M., Krasieva T.B., König K., Tromberg B.J., Kelly K.M. In Vivo Multiphoton Microscopy of Basal Cell Carcinoma. JAMA Dermatol. 2015;151(10):1068–1074. doi: 10.1001/jamadermatol.2015.0453.

149. Koehler M.J., Preller A., Elsner P., König K., Hipler U.C., Kaatz M. Noninvasive evaluation of dermal elastosis by in vivo multiphoton tomography with autofluorescence lifetime measurements. Exp Dermatol. 2012;21(1):48–51. doi: 10.1111/j.1600-0625.2011.01405.x.

150. Schneider S.L., Kohli I., Hamzavi I.H., Council M.L., Rossi A.M., Ozog D.M. Emerging imaging technologies in dermatology: Part II: Applications and limitations. JAAD. 2019;80(4):1121–1131. doi: 10.1016/j.jaad.2018.11.043.

151. Sciolla B., Cowell L., Dambry T., Guibert B., Delachartre P. Segmentation of Skin Tumors in High-Frequency 3-D Ultrasound Images. Ultrasound in Medicine & Biology. 2017;43(1):227–238. doi: 10.1016/j.ultrasmedbio.2016.08.029.

152. Barcaui Ede O., Carvalho A.C., Lopes F.P., Pineiro-Maceira J., Barcaui C.B. High frequency ultrasound with color Doppler in dermatology. An Bras Dermatol. 2016;91(3):262–273. doi: 10.1590/abd1806-4841.20164446.

153. Bhatt K.D., Tambe S.A., Jerajani H.R., Dhurat R.S. Utility of high-frequency ultrasonography in the diagnosis of benign and malignant skin tumors. Indian J Dermatol Venereol Leprol. 2017;83(2):162–182. doi: 10.4103/0378-6323.191136.

154. Wortsman X. Ultrasound in dermatology: why, how, and when? Semin Ultrasound CT MR. 2013;34(3):177–195. doi: 10.1053/j.sult.2012.10.001.

155. Hernandez-Ibanez C., Blazquez-Sanchez N., Aguilar-Bernier M., FunezLiebana R., Rivas-Ruiz F., de Troya-Martin M. Usefulness of HighFrequency Ultrasound in the Classification of Histologic Subtypes of Primary Basal Cell Carcinoma. Actas Dermo­sifiliogr. 2017;108(1):42–51. doi: 10.1016/j.ad.2016.08.002.

156. Nassiri-Kashani M., Sadr B., Fanian F., Kamyab K., Noormohammadpour P., Shahshahani M.M. et al. Pre-operative assessment of basal cell carcinoma dimensions using high frequency ultrasonography and its correlation with histopathology. Skin Res Technol. 2013;19(1):e132–138. doi: 10.1111/j.1600-0846.2012.00619.x.

157. Marmur E.S., Berkowitz E.Z., Fuchs B.S., Singer G.K., Yoo J.Y. Use of highfrequency, high-resolution ultrasound before Mohs surgery. Dermatol Surg. 2010;36(6):841–847. doi: 10.1111/j.1524-4725.2010.01558.x.

158. Green P.S., Arditi M. Ultrasonic reflex transmission imaging. Ultrasonic Imaging. 1985;7(3):201–214. doi: 10.1177/016173468500700301.

159. Morimoto T., Kimura S., Konishi Y., Komaki K., Uyama T., Monden Y. et al. A study of the electrical bio-impedance of tumors. Journal of Investigative Surgery. 1993;6(1):25–32. doi: 10.3109/08941939309141189.

160. Piperno G., Frei E.H., Moshitzky M. Breast cancer screening by impedance measurements. Front Med Biol Eng. 1990;2(2):111–117.

161. Glickman Y.A., Filo O., David M., Yayon A., Topaz M., Zamir B. et al. Electrical impedance scanning: a new approach to skin cancer diagnosis. Skin Research and Technology. 2003;9(3):262–268. doi: 10.1034/j.1600-0846.2003.00022.x.

162. Han F., Shi G., Liang C., Wang L., Li K. A simple and efficient method for breast cancer diagnosis based on infrared thermal imaging. Cell Biochem Biophys. 2015;71(1):491–498. doi: 10.1007/s12013-014-0229-5.

163. John H.E., Niumsawatt V., Rozen W.M., Whitaker I.S. Clinical applications of dynamic infrared thermography in plastic surgery: a systematic review. Gland Surg. 2016;5(2):122–132. doi: 10.3978/j.issn.2227-684X.2015.11.07.

164. Godoy S.E., Hayat M.M., Ramirez D.A., Myers S.A., Padilla R.S., Krishna S. Detection theory for accurate and non-invasive skin cancer diagnosis using dynamic thermal imaging. Biomedical Optics Express. 2017;8(4):2301–2323. doi: 10.1364/BOE.8.002301.

165. Herman C. The role of dynamic infrared imaging in melanoma diagnosis. Expert Review of Dermatology. 2013;8(2):177–184. doi: 10.1586/edm.13.15.

166. Magalhaes C., Vardasca R., Mendes J. Recent use of medical infrared thermography in skin neoplasms. Skin Research and Technology. 2018;24(4):587–591. doi: 10.1111/srt.12469.

167. Wachsman W., Morhenn V., Palmer T., Walls L., Hata T., Zalla J. et al. Noninvasive genomic detection of melanoma. Br J Dermatol. 2011;164(4):797–806. doi: 10.1111/j.1365-2133.2011.10239.x.

168. Ferris L.K., Rigel D.S., Siegel D.M., Skelsey M.K., Peck G.L., Hren C. et al. Impact on clinical practice of a non-invasive gene expression melanoma rule-out test: 12-month follow-up of negative test results and utility data from a large US registry study. Dermatol Online J. 2019;25(5). Available at: https://dermtech.com/wp-content/uploads/DOJ201912moFerris.pdf.

169. Yao Z., Allen T., Oakley M., Samons C., Garrison D., Jansen B. Analytical Characteristics of a Noninvasive Gene Expression Assay for Pigmented Skin Lesions. Assay Drug Dev Technol. 2016;14(6):355–363. doi: 10.1089/adt.2016.724.

170. Ferris L.K., Gerami P., Skelsey M.K., Peck G., Hren C., Gorman C. et al. Realworld performance and utility of a noninvasive gene expression assay to evaluate melanoma risk in pigmented lesions. Melanoma Res. 2018;28(5):478–482. doi: 10.1097/CMR.0000000000000478.

171. Rivers J.K., Copley M.R., Svoboda R., Rigel D.S. Non-Invasive Gene Expression Testing to Rule Out Melanoma. Skin Therapy Lett. 2018;23(5):1–4.


Для цитирования:


Гаранина О.Е., Самойленко И.В., Шливко И.Л., Клеменова И.А., Незнахина М.С., Демидов Л.В. Неинвазивные методы диагностики опухолей кожи и их потенциал применения для скрининга меланомы кожи: систематический обзор литературы. Медицинский Совет. 2020;(9):102-120. https://doi.org/10.21518/2079-701X-2020-9-102-120

For citation:


Garanina O.E., Samoylenko I.V., Shlivko I.L., Klemenova I.A., Neznakhina M.S., Demidov L.V. Non-invasive diagnostic techniques for skin tumors and their potential for use in skin melanoma screening: a systematic literature review. Meditsinskiy sovet = Medical Council. 2020;(9):102-120. (In Russ.) https://doi.org/10.21518/2079-701X-2020-9-102-120

Просмотров: 18


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)