Preview

Meditsinskiy sovet = Medical Council

Advanced search

The possibilities of using xenon therapy in patients with severe cancer pain

https://doi.org/10.21518/2079-701X-2020-9-265-270

Abstract

In accordance with the clinical recommendations of the World Health Organization and the Ministry of Health of the Russian Federation, the main analgesics for the treatment of chronic cancer pain are non-opioid and opioid analgesics, given stepwise in combination with co-analgesics and adjuvant drugs. As a rule, this stepwise scheme of painkilling is effective in most cases. However, 20-30% of patients cannot achieve an acceptable level of pain relief despite the use of these analgesics in combination. Is there another way to help such patients? Interventional methods of analgesia are an option, yet not all patients agree to invasive methods due to the possible side effects and unavailability of these methods. In these cases other mechanisms of analgesia are required, such as NMDA receptor antagonists, which reduce opioid tolerance and hyperalgesia. Still not all the drugs of this group can be applied in our practice.
Analgesic properties of nitrous oxide can only be found in high anesthetic doses. Another option is metadon, but it is forbidden and cannot be used in our country. Still one more option is ketamine, which has severe side effects.
In our clinical practice we decided to use xenon, which has NMDA inhibition effects. Its analgesic effect and safety have been confirmed in numerous studies.
This publication aims to demonstrate a successful clinical case when we used xenon and oxygen inhalations course for the treatment of a severe cancer pain with a patient who had been taking morphine by mouth.

About the Authors

R. R. Sarmanayeva
National Medical Research Radiological Center
Russian Federation

Regina R. Sarmanayeva, doctor palliative care center 

3, 2nd Botkinsky proezd, Moscow,125284



G. R. Abuzarova
National Medical Research Radiological Center
Russian Federation

Guzal R. Abuzarova, Dr. of Sci. (Med.), Head of palliative care center

3, 2nd Botkinsky proezd, Moscow,125284



N. M. Bychkova
National Medical Research Radiological Center
Russian Federation

Natalia M. Bychkova, Cand. of Sci. (Med.), Head of the Outpatient Department of Radiation Therapy

3, 2nd Botkinsky proezd, Moscow,125284



V. E. Khoronenko
National Medical Research Radiological Center
Russian Federation

Victoria E. Khoronenko, Dr. of Sci. (Med.), Head of department of anesthesiology and resuscitation

3, 2nd Botkinsky proezd, Moscow,125284



S. V. Kuznetcov
National Medical Research Radiological Center
Russian Federation

Stanislav V. Kuznetcov, doctor - neurologist palliative care center

3, 2nd Botkinsky proezd, Moscow,125284



References

1. Trang T., Al-Hasani R., Salvemini D., Salter M.W., Gutstein H., Cahillet C.M. Pain and poppies: the good, the bad, and the ugly of opioid analgesics. Journal of Neuroscience. 2015;35(41):13879–13888. doi: 10.1523/jneurosci.2711-15.2015.

2. Stein C., Kopf A. Pain therapy – Are there new options on the horizon? Best Practice & Research: Clinical Rheumatology. 2019;33(3):101420. doi: 10.1016/j.berh.2019.06.002.

3. Corli O., Roberto A., Corsi N., Galli F., Pizzuto M. Opioid switching and variability in response in pain cancer patients. Supportive Care in Cancer. 2019;27(6):2321–2327. doi: 10.1007/s00520-018-4485-6.

4. Reddy A., Yennurajalingam S., Pulivarthi K., Palla S.L., Wang X., Kwon J.H. et al. Frequency, outcome, and predictors of success within 6 weeks of an opioid rotation among outpatients with cancer receiving strong opioids. Oncologist. 2013;18(2):212–220. doi: 10.1634/theoncologist.2012-0269.

5. Schuster M., Bayer O., Heid F., Laufenberg-Feldmann R. Opioid Rotation in Cancer Pain Treatment. Deutsches Aerzteblatt International. 2018;115(9):135–142. doi: 10.3238/arztebl.2018.0135.

6. Colvin L.A., Bull F., Hales T.J. Perioperative opioid analgesia – when is enough too much? A review of opioid-induced tolerance and hyperalgesia. The Lancet. 2019;393(10180):1558–1568. doi: 10.1016/S0140-6736(19)30430-1.

7. Ferrini F., Trang T., Mattioli T.M., Laffray S., Del’Guidice T., Lorenzo L. et al. Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl- homeostasis. Nature Neuroscience. 2013;16(2):183–192. doi: 10.1038/nn.3295.

8. Zhang Х., Chen S., Chen H., Pan H., Zhao Y. Inhibition of β-ARK1 Ameliorates Morphine-induced Tolerance and Hyperalgesia Via Modulating the Activity of Spinal NMDA Receptors. Molecular Neurobiology. 2018;55(6):5393–5407. doi: 10.1007/s12035-017-0780-3.

9. Zhao Y.L., Chen S.R., Chen H., Pan H.L. Chronic opioid potentiates presynaptic but impairs postsynaptic N-methyl-D-aspartic acid receptor activity in spinal cords: implications for opioid hyperalgesia and tolerance. J Biol Chem. 2012;287(30):25073–25085. doi: 10.1074/jbc.M112.378737.

10. Gong K., Bhargava A., Jasmin L. GluN2B N-methyl-D-aspartate receptor and excitatory amino acid transporter 3 are upregulated in primary sensory neurons after 7 days of morphine administration in rats: implication for opiate-induced hyperalgesia. Pain. 2016;157(1):147–158. doi: 10.1097/j.pain.0000000000000342.

11. Yang D.Z., Sin B., Beckhusen J., Xia D., Khaimova R., Iliev I. Opioid-Induced Hyperalgesia in the Nonsurgical Setting: A Systematic Review. Am J Ther. 2019;26(3):e397–e405. doi: 10.1097/MJT.0000000000000734.

12. Yagi M., Mashimo T., Kawaguchi T., Yoshiya I. Analgesic and hypnotic effects of subanaesthetic concentrations of xenon in human volunteers: comparison with nitrous oxide. British Journal of Anaesthesia. 1995;74(6):670–673. doi: 10.1093/bja/74.6.670.

13. Mio Y., Shim Y.H., Richards E., Bosnjak Z.J., Pagel P.S., Bienengraeber M. Xenon preconditioning: the role of prosurvival signaling, mitochondrial permeability transition and bioenergetics in rats. Anesth Analg. 2009;108(3):858–866. doi: 10.1213/ane.0b013e318192a520.

14. Lavaur J., Lemaire M., Pype J., Le Nogue D., Hirsch E.C., Michel P.P. Xenonmediated neuroprotection in response to sustained, low-level excitotoxic stress. Cell Death Discovery. 2016;2:16018. doi: 10.1038/cddiscovery.2016.18.

15. Laitio R., Hynninen M., Arola O., Virtanen S., Parkkola R., Saunavaara J. et al. Effect of Inhaled Xenon on Cerebral White Matter Damage in Comatose Survivors of Out-of-Hospital Cardiac ArrestA Randomized Clinical Trial. JAMA. 2016;315(11):1120–1128. doi: 10.1001/jama.2016.1933.

16. Law L.S., Lo E.A., Gan T.J. Xenon anesthesia: a systematic review and metaanalysis of randomized controlled trials. Anesth Analg. 2016;122(3):678– 697. doi: 10.1213/ANE.0000000000000914.

17. Bracken A., Burns T., Newland D. A trial of xenon as a non-explosive anaesthetic. Anaesthesia. 1956;11(1):40–49. doi: 10.1111/j.1365-2044.1956.tb07937.x.

18. Буров Н., Корниенко Л., Макеев Г., Потапов В. Клинико-экспериментальные исследования анестезии ксеноном. Анестезия и реаниматология. 1999;(6):56–60. Режим доступа: https://pubmed.ncbi.nlm.nih.gov/11452771/ Burov N.E., Kornienko L.Iu., Makeev G.N., Potapov V.N. Clinical and experimental study of xenon anesthesia. Anesteziya i reanimatologiya = Anesteziol Reanimatol. 1999;(6):56–60. (In Russ.) Available at: https://pubmed.ncbi.nlm.nih.gov/11452771/

19. Sonner J.M., Cascio M., Xing Y., Fanselow M.S., Kralic J.E., Morrow A.L. et al. Alpha 1 subunit-containing GABA type A receptors in forebrain contribute to the effect of inhaled anesthetics on conditioned fear. Mol Pharmacol. 2005;68(1):61–68. doi: 10.1124/mol.104.009936.

20. Salmi E., Laitio R., Aalto S., Maksimow A., Långsjö J., Kaisti K. et al. Xenon does not affect gamma-aminobutyric acid type A receptor binding in humans. Anesth Analg. 2008;106(1):129–134. doi: 10.1213/01.ane.0000287658.14763.13.

21. Abraini J.H., Marassio G., David H.N., Vallone B., Prangé T., Colloc’h N. Crystallographic studies with xenon and nitrous oxide provide evidence for proteindependent processes in the mechanisms of general anesthesia. Anesthesiology. 2014;121(5):1018–1027. doi: 10.1097/ALN.0000000000000435.

22. Lawrence J.H., Loomis W.F., Tobias C.A., Turpin F.H. Preliminary observations on the narcotic effect of xenon with a review of values for solubilities of gases in water and oils. J Physiol. 1946;105(3):197–204. Available at: https://pubmed.ncbi.nlm.nih.gov/16991720/.

23. Jevtović-Todorović V., Todorović S.M., Mennerick S. Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat Med. 1998;4(4):460–463. doi: 10.1038/nm0498-460.

24. Yamakura T., Harris R.A. Effects of gaseous anesthetics nitrous oxide and xenon on ligand-gated ion channels. Comparison with isoflurane and ethanol. Anesthesiology. 2000;93(4):1095-1101. doi: 10.1097/00000542-200010000-00034.

25. Dobrovolsky A., Ichim T.E., Ma D., Kesari S., Bogin V. Xenon in the treatment of panic disorder: an open label study. J Transl Med. 2017;15(1):137. doi: 10.1186/s12967-017-1237-1.

26. Utsumi J., Adachi T., Kurata J., Miyazaki Y., Shibata M., Murakawa M. et al. Effect of xenon on central nervous system electrical activity during sevoflurane anaesthesia in cats: comparison with nitrous oxide. Br J Anaesth. 1998;80(5):628–633. doi: 10.1093/bja/80.5.628.

27. Yagi M., Mashimo T., Kawaguchi T., Yoshiya I. Analgesic and hypnotic effects of subanaesthetic concentrations of xenon in human volunteers: comparison with nitrous oxide. Br J Anaesth. 1995;74(6):670–673. doi: 10.1093/bja/74.6.670.

28. Petersen-Felix S., Luginbühl M., Schnider T., Curatolo M., Arendt-Nielsen l., Zbinden A.M. Comparison of the analgesic potency of xenon and nitrous oxide in humans evaluated by experimental pain. Br J Anaesth. 1998;81(5):742–747. doi: 10.1093/bja/81.5.742.

29. Кукушкин М.Л., Игонькина С.И., Потапов С.В., Потапов А.В. Обезболивающее действие ксенона у крыс на модели воспалительной боли. Бюллетень экспериментальной биологии и медицины. 2016;162(10):445– 447. Режим доступа: http://iramn.ru/journals/bbm/2016/10/2118/. Kukushkin M.L., Igon’kina S.I., Potapov S.V., Potapov A.V. Analgesic Effect of Xenon in Rat Model of Inflammatory Pain. Bulletin of Experimental Biology and Medicine. 2017;162(4):451–453. doi: 10.1007/s10517-017-3637-x.

30. Bedi A., Murray J., Dingley J., Dingley J., Stevenson M.J.. Fee J.P.H. Use of xenon as a sedative for patients receiving critical care. Critical Care Medicine. 2003;31(10):2470–2477. doi: 10.1097/01.CCM.0000089934.66049.76.

31. Ohara A., Mashimo T., Zhang P., Inagaki Y., Shibuta S., Yoshiya I. A comparative study of the antinociceptive action of xenon and nitrous oxide in rats. Anesth Analg. 1997;85(4):931–936. doi: 10.1097/00000539-199710000-00039.


Review

For citations:


Sarmanayeva RR, Abuzarova GR, Bychkova NM, Khoronenko VE, Kuznetcov SV. The possibilities of using xenon therapy in patients with severe cancer pain. Meditsinskiy sovet = Medical Council. 2020;(9):265-270. (In Russ.) https://doi.org/10.21518/2079-701X-2020-9-265-270

Views: 652


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)